Skip to main content

Fault Models in Reversible and Quantum Circuits

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 22))

Abstract

In this chapter we describe faults that can occur in reversible circuit as compared to faults that can occur in classical irreversible circuits. Because there are many approaches from classical irreversible circuits that are being adapted to reversible circuits, it is necessary to analyze what faults that exists in irreversible circuits can appear in reversible circuit as well. Thus we focus on comparing faults that can appear in classical circuit technology with faults that can appear in reversible and quantum circuit technology. The comparison is done from the point of view of information reversible and information irreversible circuit technologies. We show that the impact of reversible computing and quantum technology strongly modifies the fault types that can appear and thus the fault models that should be considered. Unlike in the classical non-reversible transistor based circuits, in reversible circuits it is necessary to specify what type of implementation technology is used as different technologies can be affected by different faults. Moreover the level of faults and their analysis must be revised to precisely capture the effects and properties of quantum gates and quantum circuits that share several similarities with reversible circuits. By not doing so the available testing approaches adapted from classical circuits would not be able to properly detect relevant faults. In addition, if the classical faults are directly applied without revision and modifications, the presented testing procedure would be testing for such faults that cannot physically occur in the given implementation of reversible circuits. The observation and analysis of these various faults presented in this chapter clearly demonstrates what faults can occur and what faults cannot occur in various reversible technologies. Consequently the results from this chapter can be used to design more precise tests for reversible logic circuits. Moreover the clearly described differences between faults occurring in reversible and irreversible circuits means that new algorithms for fault detection should be implemented specifically for particular reversible technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, N.: Detecting errors in reversible circuits with invariant relationships. arXiv:0812.3871v1 (2008)

  2. Amin, M.H.S., Omelyanchouk, A.N., Rashkeev, S.N., Coury, M., Zagoskin, A.M.: Quasiclassical theory of spontaneous currents at surfaces and interfaces of d-wave superconductors. Phys. B 318, 162 (2002)

    Article  Google Scholar 

  3. Anantharam, V., He, M., Natarajan, K., Xie, H., Frank, M.P.: Driving fully-adiabatic logic circuits using custom high-q mems resonators. In: Workshop on Methodologies for Low Power Design, part of the ESA 04 (Embedded Systems and Applications) (2004)

    Google Scholar 

  4. Athas, W., Jr, Svensson, L., Koller, J.G., Tzartzanis, N., Ying-Chin Chou, E.: Low-power digital systems based on adiabatic-switching principles. IEEE Trans. Very Larg. Scale Integr. (VLSI) Syst. 2, 398–407 (1994)

    Google Scholar 

  5. Bennett, H.C., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Let. 76, 722–725 (1996)

    Article  Google Scholar 

  6. Biamonte, J., Allen, J., Perkowski, M.: Fault models for quantum mechanical switching networks. J. Electron. Test. 26, 499–511 (2010)

    Article  Google Scholar 

  7. Blais, A., Zagoskin, A.M.: Operation of universal gates in a solid state quantum computer based on clean Josephson junctions between d-wave superconductors. Phys. Rev. A 61, 042308 (2000)

    Article  Google Scholar 

  8. Desoete, B., De Vos, A.: A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33, 89–104 (2002)

    Article  MATH  Google Scholar 

  9. Farazmand, N., Zamani, M., Tahoori, M.: Online fault testing of reversible logic using dual rail coding. In: Proceedings of the IEEE International On-Line Testing Symposium, pp. 204–205. (2010)

    Google Scholar 

  10. Farazmand, N., Zamani, M., Tahoori, M.: Online multiple fault detection in reversible circuits. In: Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 429–437 (2010)

    Google Scholar 

  11. Fiurášek, J.: Linear optical Fredkin gate based on partial-SWAP gate. Phys. Rev. A 78, 032317 (2008)

    Article  Google Scholar 

  12. He, M., Frank, M.P., Xie, H.: CMOS-MEMS resonator as a signal generator for fully-adiabatic logic circuits. Devices, and Systems, In: SPIE Proceedings of Smart Structures (2005)

    Google Scholar 

  13. Jones, N.C.: Logic Synthesis for Fault-Tolerant Quantum Computers. PhD thesis (2013)

    Google Scholar 

  14. Knill, E.: Quantum computing with realistic noisy devices. (2005)

    Google Scholar 

  15. Lukac, M., Kameyama, M., Hiura, K.: Natural image understanding using algorithm selection and high level feedback. In: SPIE Intelligent Robots and Computer Vision XXX: Algorithms and Techniques, vol. 8662, pp. 86620D (2013)

    Google Scholar 

  16. Lukac, M., Perkowski, M., Kameyama, M.: Evolutionary quantum logic synthesis of boolean reversible logic circuits embedded in ternary quantum space using structural restrictions. In: Proceedings of the IEEE World Congress on Evolutionary Computation (2010)

    Google Scholar 

  17. Lukac, M., Shuai, B., Kameyama, M., Miller, M.: Information preserving logic - using logical reversibility to reduce the CPU-memory bottleneck. In: IEEE International Symposium on Multiple-Valued Logic on CD (2011)

    Google Scholar 

  18. Micuda, M., Sedlak, M., Straka, I., Mikova, M., Dusek, M., Jezek, M., Fiurasek, J.: Efficient experimental estimation of fidelity of linear optical quantum toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)

    Article  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  20. Paetznick, A., Reichardt, B.W.: Universal fault-tolerant quantum computation with only transversal gates and error correction. Preprint arXiv:1304.3709v1 (2013)

  21. Paler, A., Polian, I., Hayes, J.P.: Detection and diagnosis of faulty quantum circuits. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 181–186 (2012)

    Google Scholar 

  22. Polian, I., Hayes, J.P.: Advanced modeling of faults in reversible circuits. In: Proceedings of the IEEE East-West Design and Test Symposium, pp. 376–381 (2010)

    Google Scholar 

  23. Puzzuoli, D., Granade, C., Haas, H., Criger, B., Magesan, E., Cory, D.G.: Tractable simulation of error correction with honest approximations to realistic fault models. arXiv:1309.4717v2 (2013)

  24. Rice, J.E.: An overview of fault models and testing approaches for reversible logic. In: Proceedings of the Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), p. 6 (2013)

    Google Scholar 

  25. Steane, A.M.: Error correcting codes in quantum theory. 77, 793–797

    Google Scholar 

  26. Tague, L., Soeken, M., Minato, S., Drechsler, R.: Debugging of reversible circuits using \(\pi \)DDs. In: IEEE Proceedings of the IEEE International Symposium on Multiple-Valued Logic, pp. 316–321 (2013)

    Google Scholar 

  27. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Int. J. Unconv. Comput. 1, 339–355 (2005)

    Google Scholar 

  28. Van Rentergem, Y., De Vos, A., Storme, L.: Implementing an arbitrary reversible logic gate. J. Phys. A Math. Gener. Inst. Phys. 38, 3555–3577 (2005)

    Google Scholar 

  29. Wille, R., Zhang, H., Drechsler, R.: Fault ordering for automatic test pattern generation of reversible circuits. In: Proceedings of the IEEE International Symposium on Multiple-Valued Logic, pp. 29–34 (2013)

    Google Scholar 

  30. Zamani, M., Tahoori, M.M.: Online missing/repeated gate faults detection in reversible circuits. In: Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 435–442 (2011)

    Google Scholar 

  31. Zamani, M., Tahoori, M.B., Chakrabarty, K.: Ping-pong test: Compact test vector generation for reversible circuits. In: Proceedings of the 30th VLSI Test Symposium, pp. 164–169 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lukac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lukac, M., Kameyama, M., Perkowski, M., Kerntopf, P., Moraga, C. (2017). Fault Models in Reversible and Quantum Circuits. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-33924-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33924-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33923-8

  • Online ISBN: 978-3-319-33924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics