Skip to main content

Percolation Transition and Related Phenomena in Terms of Grossone Infinity Computations

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 22))

Abstract

In this chapter, a number of traditional models related to the percolation theory is taken into consideration: site percolation, gradient percolation, and forest-fire model. They are studied by means of a new computational methodology that gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a computer—the Infinity Computer —introduced recently. It is established that in light of the new arithmetic using grossone-based numerals the phase transition point in site percolation and gradient percolation appears as a critical interval, rather than a critical point. Depending on the ‘microscope’ we use, this interval could be regarded as finite, infinite, or infinitesimal interval. By applying the new approach we show that in vicinity of the percolation threshold we have many different infinite clusters instead of one infinite cluster that appears in traditional considerations. With respect to the cellular automaton forest-fire model, two traditional versions of the model are studied: a real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and a simplified version with instantaneous combustion. By applying the new approach there is observed that in both situations we deal with the same model but with different time resolutions. We show that depending on ‘microscope’ we use, the same cellular automaton forest-fire model reveals either the instantaneous forest combustion or the step by step firing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We are reminded that a numeral is a symbol or a group of symbols that represents a number . The difference between numerals and numbers is the same as the difference between words and the things they refer to. A number is a concept that a numeral expresses. The same number can be represented by different numerals. For example, the symbols ‘8’, ‘eight’, and ‘IIIIIIII’ are different numerals, but they all represent the same number..

  2. 2.

    Nowadays not only positive integers but also zero is frequently included in \(\mathbb {N}\). However, since zero has been invented significantly later than positive integers used for counting objects, zero is not include in \(\mathbb {N}\) in this text.

  3. 3.

    For example, if we add only one occupied site in our greed, then p increases by , and that is the smallest step along p we can distinguish in our lattice.

References

  1. Abbott, L., Rohrkemper, R.: Prog. Brain Res. 165, 13 (2007)

    Article  Google Scholar 

  2. Bak, P., Chen, K., Tang, C.: A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147, 297 (1990)

    Article  Google Scholar 

  3. Benayoun, M., Cowan, J.D., van Drongelen, W., Wallace, E.: PLOS Comput. Biol. 6, e1000846 (2010)

    Article  Google Scholar 

  4. Broadbent, S.R., Hammersley, J.M.: Percolation processes i. crystals and mazes. Proc. Camb. Phil. Soc. 53, 629–641 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butterworth, B., Reeve, R., Reynolds, F., Lloyd, D.: Numerical thought with and without words: evidence from indigenous Australian children. Proc. Natl. Acad. Sci U. S. A. 105(35), 13179–13184 (2008)

    Article  Google Scholar 

  6. Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers. Dover Publications, New York (1955)

    Google Scholar 

  7. Cauchy, A.L.: Le Calcul infinitésimal. Paris (1823)

    Google Scholar 

  8. Clar, S., Drossel, B., Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model. Phys. Rev. E 50(2), 1009–1018 (1994)

    Article  Google Scholar 

  9. Conway, J.H., Guy, R.K.: The Book of Numbers. Springer, New York (1996)

    Book  MATH  Google Scholar 

  10. d’Alembert, J.: Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers. Différentiel 4 (1754)

    Google Scholar 

  11. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    MathSciNet  MATH  Google Scholar 

  12. D’Alotto, L.: A classification of two-dimensional cellular automata using infinite computations. Indian J. Math. 55, 143–158 (2013)

    MathSciNet  MATH  Google Scholar 

  13. De Cosmis, S., De Leone, R.: The use of Grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  14. de Pablo, J.J.: Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu. Rev. Phys. Chem. 62, 555–574 (2011). doi:10.1146/annurev-physchem-032210-103458

    Article  Google Scholar 

  15. Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69(11), 1629–1632 (1992)

    Article  Google Scholar 

  16. Drossel, B., Schwabl, F.: Self-organized criticality in a forest-fire model. Physica A 191, 47–50 (1992)

    Article  MATH  Google Scholar 

  17. Feder, J.: Fractals. Plenum, New York (1988)

    Book  MATH  Google Scholar 

  18. Gordon, P.: Numerical cognition without words: evidence from Amazonia. Science 306, 496–499 (2004)

    Article  Google Scholar 

  19. Gouyet, J.F.: Dynamics of diffusion and invasion fronts: on the disconnection-reconnection exponents of percolation clusters. In: Rabin, Y., Bruinsma, R. (eds.) Soft Order in Physical Systems, pp. 163–166. Springer, New York (1994)

    Chapter  Google Scholar 

  20. Halvin, S., Bunde, A.: Fractals and Disordered Systems. Springer, Berlin (1995)

    Google Scholar 

  21. Halvin, S., Bunde, A.: Fractals in Science. Springer, Berlin (1995)

    Google Scholar 

  22. Iudin, D.I., Sergeyev, Ya.D., Hayakawa, M.: Interpretation of percolation in terms of infinity computations. Appl. Math. Comput. 218, 8099–8111 (2012)

    Google Scholar 

  23. Iudin, D.I., Sergeyev, Ya.D., Hayakawa, M.: Infinity computations in cellular automaton forest-fire model. Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2015)

    Google Scholar 

  24. Izhikevich, E.M., Gally, J.A., Edelman G.M.: Cereb Cortex 14, 933 (2004); Izhikevich, E.M.: Neural Comput. 18, 245 (2006)

    Google Scholar 

  25. Jensen, H.J.: Self-Organized Criticality. Cambridge university press, Cambridge (1998)

    Book  MATH  Google Scholar 

  26. Leibniz, G.W., Child, J.M.: The Early Mathematical Manuscripts of Leibniz. Dover Publications, New York (2005)

    Google Scholar 

  27. Lolli, G.: Metamathematical investigations on the theory of grossone. Appl. Math. Comput. 255, 3–14 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Margenstern, M.: Using Grossone to count the number of elements of infinite sets and the connection with bijections, p-adic numbers. Ultrametr. Anal. Appl. 3(3), 196–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Margenstern, M.: An application of Grossone to the study of a family of tilings of the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 3–11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mo\(\upbeta \)ner, W.K., Drossel, D., Schwabl, F.: Computer simulations of the forest-fire model. Physica A 190, 205–217 (1992)

    Google Scholar 

  32. Newton, I.: Method of Fluxions (1671)

    Google Scholar 

  33. Pica, P., Lemer, C., Izard, V., Dehaene, S.: Exact and approximate arithmetic in an amazonian indigene group. Science 306, 499–503 (2004)

    Article  Google Scholar 

  34. Quintanilla, J.A., Ziff R.M.: Near symmetry of percolation thresholds of fully penetrable disks with two different radii. Phys. Rev. E 76(5), 051115 [6 pages]. doi:10.1103/PhysRevE.76.051115 (2007)

  35. Robinson, A.: Non-standard Analysis. Princeton Univ. Press, Princeton (1996)

    MATH  Google Scholar 

  36. Sergeyev, Ya.D.: Arithmetic of Infinity, 2nd edn. Edizioni Orizzonti Meridionali CS (2003)

    Google Scholar 

  37. Sergeyev, Ya.D.: http://www.theinfinitycomputer.com (2004)

  38. Sergeyev, Ya.D.: Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons Fractals 33(1), 50–75 (2007)

    Google Scholar 

  39. Sergeyev, Ya.D.: Infinity computer and calculus. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) AIP Proceedings of the 5th International Conference on Numerical Analysis and Applied Mathematics, vol. 936, pp. 23–26. Melville, New York (2007)

    Google Scholar 

  40. Sergeyev, Ya.D.: Measuring fractals by infinite and infinitesimal numbers. Math. Methods, Phys. Methods Simul. Sci. Technol. 1(1), 217–237 (2008)

    Google Scholar 

  41. Sergeyev. Ya.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    Google Scholar 

  42. Sergeyev, Ya.D. : Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. EU patent 1728149, 03.06.2009

    Google Scholar 

  43. Sergeyev, Ya.D.: Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos, Solitons Fractals 42, 3042–3046 (2009)

    Google Scholar 

  44. Sergeyev, Ya.D.: Numerical computations and mathematical modelling with infinite and infinitesimal numbers. J. Appl. Math. Comput. 29, 177–195 (2009)

    Google Scholar 

  45. Sergeyev, Ya.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A: Theory, Methods Appl. 71(12), 1688–1707 (2009)

    Google Scholar 

  46. Sergeyev, Ya.D.: Counting systems and the first Hilbert problem. Nonlinear Anal. Ser. A: Theory, Methods Appl. 72(3-4), 1701–1708 (2010)

    Google Scholar 

  47. Sergeyev, Ya.D.: Lagrange lecture: methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 68(2), 95–113 (2010)

    Google Scholar 

  48. Sergeyev, Ya.D.: Higher order numerical differentiation on the infinity computer. Opt. Lett. 5(4), 575–585 (2011)

    Google Scholar 

  49. Sergeyev, Ya.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–576 (2011)

    Google Scholar 

  50. Sergeyev, Ya.D.: Numerical computations with infinite and infinitesimal numbers: theory and applications. In: Sorokin, A., Pardalos, P.M. (eds.) Dynamics of Information Systems: Algorithmic Approaches, pp. 1–66. Springer, New York (2013)

    Google Scholar 

  51. Sergeyev, Ya.D.: Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer. Appl. Math. Comput. 219(22), 10668–10681 (2013)

    Google Scholar 

  52. Sergeyev, Ya.D.: Numerical infinitesimals for solving ODEs given as a black-box. In: Simos, T.E., Tsitouras, Ch. (eds.) AIP Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM-2014), vol. 1648. Melville, New York, 150018 (2015)

    Google Scholar 

  53. Sergeyev, Ya.D.: The Olympic medals ranks, lexicographic ordering and numerical infinities. Math. Intell. 37(2), 4–8 (2015)

    Google Scholar 

  54. Sergeyev, Ya.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime, Matematica nella Società e nella Cultura: Rivista della Unione Matematica Italiana 8(1), 111–147 (2015)

    Google Scholar 

  55. Sergeyev, Ya.D.: The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area, Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2016)

    Google Scholar 

  56. Sergeyev, Ya.D., Garro, A.: Observability of turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    Google Scholar 

  57. Sergeyev, Ya.D., Garro, A.: Single-tape and multi-tape turing machines through the lens of the Grossone methodology. J. Supercomput. 65(2), 645–663 (2013)

    Google Scholar 

  58. Sergeyev, Ya.D., Garro, A.: The Grossone methodology perspective on turing machines. In: Adamatzky, A. (ed.) Automata, Universality, Computation. Springer Series “Emergence, Complexity and Computation”, vol. 12, pp. 139–169 (2015)

    Google Scholar 

  59. Shante, K.S., Kirkpatrick, S.: An introduction to percolation theory. Adv. Phys. 20(85), 325–357 (1971)

    Article  Google Scholar 

  60. Stauffer, D.: Introduction to Percolation Theory. Taylor & Francis, Berlin (1985)

    Book  MATH  Google Scholar 

  61. Vita, M.C., De Bartolo, S., Fallico, C., Veltri, M.: Usage of infinitesimals in the Menger’s Sponge model of porosity. Appl. Math. Comput. 218(16), 8187–8196 (2012)

    MathSciNet  MATH  Google Scholar 

  62. Wallis, J.: Arithmetica Infinitorum (1656)

    Google Scholar 

  63. Zhigljavsky, A.A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218(16), 8064–8076 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant from the Government of the Russian Federation (contract No. 14.B25.31.0023) and by the Russian Foundation for Basic Research (projects No. 13-05-12102 ofi_m, No. 13-05-01100 A, No. 15-01-06612 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Iudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iudin, D.I., Sergeyev, Y.D. (2017). Percolation Transition and Related Phenomena in Terms of Grossone Infinity Computations. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-33924-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33924-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33923-8

  • Online ISBN: 978-3-319-33924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics