Experiments in Musical Biocomputing: Towards New Kinds of Processors for Audio and Music

  • Eduardo Reck MirandaEmail author
  • Edward Braund
Part of the Emergence, Complexity and Computation book series (ECC, volume 23)


The emerging field of Unconventional Computing is developing new algorithms and computing architectures inspired by or implemented in biological, physical and chemical systems. We are investigating how Unconventional Computing may benefit the future of the music industry and related audio engineering technologies. In this chapter, after a brief introduction to Unconventional Computing, we present our research into harnessing the behaviour of a slime mould called Physarum polycephalum to build new kinds of processors for audio and music. The plasmodium of Physarum polycephalum is a large single cell with a myriad of diploid nuclei, which moves like a giant amoeba in its pursuit for food. The organism is amorphous, and although without a brain or any serving centre of control, can respond to the environmental conditions that surround it. As our research progressed, we have successfully harnessed the organism to implement a sound synthesiser and a musical sequencer, grow biological audio wires, and build an interactive biocomputer that can listen and produce musical responses in real-time.


Cellular Automaton Cellular automataCellular Automaton Slime Mould Cellular automataCellular Automaton Modelling Physarum Polycephalum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. CRC Press, Boca Raton (2001)Google Scholar
  2. 2.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific, Singapore (2010)Google Scholar
  3. 3.
    Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)CrossRefGoogle Scholar
  4. 4.
    Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum Machine in the dark? Biophys. Rev. Lett. 6(01n02), 29–57 (2011)Google Scholar
  5. 5.
    Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)CrossRefGoogle Scholar
  6. 6.
    Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Computers. Luniver Press, Frome (2006)Google Scholar
  7. 7.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  8. 8.
    Beyls, P.: Cellular automata mapping procedures. In: Proceedings of the ICMC. Citeseer (2004)Google Scholar
  9. 9.
    Braund, E., Miranda, E.: Music with Unconventional Computing: A System for Physarum Polycephalum Sound Synthesis. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S.I (eds.) Sound, Music, and Motion. Lecture Notes in Computer Science, pp. 175–189. Springer International Publishing, Heidelberg (2014)Google Scholar
  10. 10.
    Braund, E., Miranda, E.: BioComputer music: generating musical responses with Physarum polycephalum-based memristors. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)Google Scholar
  11. 11.
    Braund, E., Miranda, E.: Music with unconventional computing: granular synthesis with the biological computing substrate Physarum polycephalum. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)Google Scholar
  12. 12.
    Braund, E., Miranda, E.: Music with unconventional computing: towards a step sequencer from plasmodium of physarum polycephalum. In: Johnson, C., Carballal, A., Correia, J. (eds.) Evolutionary and Biologically Inspired Music, Sound, Art and Design. Lecture Notes in Computer Science, vol. 9027, pp. 15–26. Springer International Publishing, Heidelberg (2015)Google Scholar
  13. 13.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  14. 14.
    Cifarelli, A., Dimonte, A., Berzina, T., Erokhin, V.: On the loading of slime mold Physarum polycephalum with microparticles for unconventional computing application. BioNanoScience 4(1), 92–96 (2014)CrossRefGoogle Scholar
  15. 15.
    Gabor, D.: Acoustical quanta and the theory of hearing. Nature 159(4044), 591–594 (1947)CrossRefGoogle Scholar
  16. 16.
    Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience 5, 1–8 (2013)Google Scholar
  17. 17.
    Gale, E., Matthews, O., de Costello, B.L., Adamatzky, A.: Beyond Markov Chains, Towards Adaptive Memristor Network-based Music Generation. arXiv preprint arXiv:1302.0785 (2013)
  18. 18.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Emergent spiking in non-ideal memristor networks. Microelectron. J. 45(11), 1401–1415 (2014)Google Scholar
  19. 19.
    Grimnes, S., Lütken, C.A., Martinsen, O.G.: Memristive properties of electro-osmosis in human sweat ducts. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 Sept 2009, Munich, Germany, pp. 696–698. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Johnsen, G.K.: An introduction to the memristor-a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance 3(1), 20–28 (2012)Google Scholar
  21. 21.
    Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Ijuc 6(2), 125–144 (2010)Google Scholar
  22. 22.
    Kirke, A., Shadbolt, P., Neville, A., Antoine, A., Miranda, E.: Q-Muse: A quantum computer music system designed for a performance for orchestra, electronics and live internet-connected photonic quantum computer. In: Conference on Interdisciplinary Musicology (CIM). Berlin (2014)Google Scholar
  23. 23.
    Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)CrossRefGoogle Scholar
  24. 24.
    Meyer, R., Stockem, W.: Studies on microplasmodia of physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)CrossRefGoogle Scholar
  25. 25.
    Miranda, E.: Biocomputer music.
  26. 26.
    Miranda, E.R.: Cellular automata music: an interdisciplinary project. J. New Music Res. 22(1), 3–21 (1993)Google Scholar
  27. 27.
    Miranda, E.R.: Granular synthesis of sounds by means of a cellular automaton. Leonardo 28, 297–300 (1995)Google Scholar
  28. 28.
    Miranda, E.R.: Evolving cellular automata music: from sound synthesis to composition. In: Proceedings of 2001 Workshop on Artificial Life Models for Musical Applications (2001)Google Scholar
  29. 29.
    Miranda, E.R.: Computer Sound Design: Synthesis Techniques and Programming, vol. 1. Taylor & Francis, UK (2002)Google Scholar
  30. 30.
    Miranda, E.R., Bull, L., Gueguen, F., Uroukov, I.S.: Computer music meets unconventional computing: towards sound synthesis with in vitro neuronal networks. Comput. Music J. 33(1), 9–18 (2009)CrossRefGoogle Scholar
  31. 31.
    Miranda, E.R., Adamatzky, A., Jones, J.: Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8(2), 107–113 (2011)CrossRefGoogle Scholar
  32. 32.
    Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 21,926 (2009)Google Scholar
  33. 33.
    Stepney, S.: Programming unconventional computers: dynamics, development, self-reference. Entropy 14(10), 1939–1952 (2012)CrossRefzbMATHGoogle Scholar
  34. 34.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  35. 35.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J. Math. 58(345–363), 5 (1936)zbMATHGoogle Scholar
  36. 36.
    von Neumann, J.: First Draft of a Report on the EDVAC (1945)Google Scholar
  37. 37.
    Volkov, A., Reedus, J., Mitchell, C.M., Tucket, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 9(4), e29,056 (2014)Google Scholar
  38. 38.
    Xenakis, I.: Formalized Music: Thought and Mathematics in Composition, vol. 6. Pendragon, United States (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Computer Music Research (ICCMR)Plymouth UniversityPlymouthUK

Personalised recommendations