Abstract
Recent advances Synthetic Biology are ushering a new practical computational substrate based on programmable information processing via biological cells. Due to the difficulties in orchestrating complex programmes using myriads of relatively simple, limited and highly stochastic processors such as living cells, robust computational technology to specify, simulate, analyse and compile cellular programs are in demand. We provide the Infobiotics Workbench (Ibw) tool, a software platform developed to model and analyse stochastic compartmentalized systems, which permits using various computational techniques, such as modelling, simulation, verification and biocompilation. We report here the details of our work for modelling, simulation and, for the first time, biocompilation, while verification is reported elsewhere in this book. We consider some basic genetic logic gates to illustrate the main features of the Ibw platform. Our results show that membrane computing provides a suitable formalism for building synthetic biology models. The software platform we developed permits analysing biological systems through the computational methods integrated into the workbench, providing significant advantages in terms of time, and enhanced understanding of biological functionality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R.: Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2(1), 14 (2006)
Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., Niculescu, I.: Extended simulation and verification platform for kernel P systems. In: 15th International Conference on Membrane Computing. LNCS, vol. 8961, pp. 158–168. Springer, Switzerland (2014)
Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance simulations of kernel P systems. In: Proceedings of the 2014 IEEE 16th International Conference on High Performance Computing and Communication. HPCC ’14, pp. 409–412. France, Paris (2014)
Beal, J., Lu, T., Weiss, R.: Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. PLoS ONE 6(8), e22,490 (2011)
Beal, J., Phillips, A., Densmore, D., Cai, Y.: High-level programming languages for biomolecular systems. In: Design and Analysis of Biomolecular Circuits, pp. 225–252. Springer, New York (2011)
Ben-Yehezkel, T., Rival, A., Raz, O., Cohen, R., Marx, Z., Camara, M., Dubern, J.F., Koch, B., Heeb, S., Krasnogor, N., Delattre, C., Shapiro, E.: Synthesis and cell-free cloning of dna libraries using programmable microfluidics. Nucleic Acids Research pp. first published online October 19, 2015 doi:10.1093/nar/gkv1087 (2015)
Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Perez-Jimenez, M.J., Romero-Campero, F.J.: On P systems as a modelling tool for biological systems. In: Membrane Computing, Lecture Notes in Computer Science, vol. 3850, pp. 114–133. Springer, Heidelberg (2006)
Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson, J.C., Densmore, D.: Eugene—a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS ONE 6(4), e18,882 (2011)
Biofab: International Open Facility Advancing Biotechnology. http://biofab.synberc.org
Blakes, J., Raz, O., Feige, U., Bacardit, J., Widera, P., Ben-Yehezkel, T., Shapiro, E., Krasnogor, N.: Heuristic for maximizing dna reuse in synthetic dna library assembly. ACS Synth. Biol. 8(3), 529–542 (2014)
Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheorghe, M.: Infobiotics workbench: A p systems based tool for systems and synthetic biology. In: Applications of Membrane Computing in Systems and Synthetic Biology. Emergence, Complexity and Computation, vol. 7, pp. 1–41. Springer International Publishing, Switzerland (2014)
Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The infobiotics workbench: an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics 27(123), 3323–3324 (2011)
Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121(9), 4059–4067 (2004)
Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., Zhuang, X.: Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233) (2015)
Cox, R.S., Surette, M.G., Elowitz, M.B.: Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3(1) (2007)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695 (2006). http://igraph.sf.net
Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model checking kernel P systems. In: 14th International Conference on Membrane Computing, LNCS, vol. 8340, pp. 151–172. Springer, Berlin, Heidelberg (2013)
Fellermann, H., Hadorn, M., Füchslin, R.M., Krasnogor, N.: Formalizing modularization and data hiding in synthetic biology. J. Emerg. Technol. Comput. Syst. 11(3), 24:1–24:20 (2014)
Fellermann, H., Krasnogor, N.: Chemical production and molecular computing in addressable reaction compartments. In: Language. Life, Limits, Lecture Notes in Computer Science, vol. 8493, pp. 173–182. Springer International Publishing, Switzerland (2014)
Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems and Synthetic Biology. Springer, Switzerland (2014)
Genetic Boolean Gates. http://www.scim.brad.ac.uk/skonur/models/gates
Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P systems for modelling cellular processes. Nat. Comput. 9(2), 457–473 (2010)
Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)
Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)
Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)
iGem: Parts Registry. http://partsregistry.org/
Konur, S., Gheorghe, M.: A property-driven methodology for formal analysis of synthetic biology systems. IEEE/ACM Trans. Comput. Biol. Bioinf. 12, 360–371 (2015)
Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conventional verification for unconventional computing: a genetic XOR gate example. Fundamenta Informaticae 134, 97–110 (2014)
Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qualitative and quantitative analysis of systems and synthetic biology constructs using P systems. ACS Synth. Biol. 4(1), 83–92 (2015)
Konur, S., Ladroue, C., Fellermann, H., Sanassy, D., Mierla, L., Ipate, F., Kalvala, S., Gheorghe, M., Krasnogor, N.: Modeling and analysis of genetic boolean gates using Infobiotics Workbench. In: Verification of Engineered Molecular Devices and Programs, pp. 26–37. Vienna, Austria (2014)
Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (2003)
Ladroue, C., Kalvala, S.: Constraint-based genetic compilation. In: Algorithms for Computational Biology, LNBI, vol. 9199. Springer International, Heidelberg (2015)
Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novère, N., Laibe, C.: BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010)
Li, H., Petzold, L.: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems. Technical report, Department of Computer Science, University of California: Santa Barbara (2006)
McCollum, J.M., Peterson, G.D., Cox, C.D., Simpson, M.L., Samatova, N.F.: The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior. Comput. Biol. Chem. 30(1), 39–49 (2006)
Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface 6(Suppl 4), S437–S450 (2009)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Ramaswamy, R., Gonzalez-Segredo, N., Sbalzarini, I.F.: A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. J. Chem. Phys. 130(24), 244104 (2009)
Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F., Sole, R.: Distributed biological computation with multicellular engineered networks. Nature 469(7329), 207–211 (2011)
Roberts, R.J., Vincze, T., Posfai, J., Macelis, D.: REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38(Database issue), D234–D236 (2010)
Romero-Campero, F.J., Twycross, J., Camara, M., Bennett, M., Gheorghe, M., Krasnogor, N.: Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci. 20(3), 427–442 (2009)
Romero-Campero, F.J., Twycross, J., Cao, H., Blakes, J., Krasnogor, N.: A multiscale modeling framework based on P systems. In: Membrane Computing, LNCS, vol. 5391, pp. 63–77. Springer, Heidelberg (2009)
Salis, H.M.: The ribosome binding site calculator. In: Synthetic Biology. Part B Computer Aided Design and DNA Assembly, Methods in Enzymology, vol. 498, pp. 19–42. Academic Press, USA (2011)
Sanassy, D., Blakes, J., Twycross, J., Krasnogor, N.: Improving computational efficiency in stochastic simulation algorithms for systems and synthetic biology. In: SynBioCCC. 11th European Conference on Artificial Life (2011)
Sanassy, D., Fellermann, H., Krasnogor, N., Konur, S., Mierlă, L., Gheorghe, M., Ladroue, C., Kalvala, S.: Modelling and stochastic simulation of synthetic biological Boolean gates. In: 16th IEEE International Conference on High Performance Computing and Communications, HPCC ’14, pp. 404–408. Paris, France (2014)
Sanassy, D., Widera, P., Krasnogor, N.: Meta-stochastic simulation of biochemical models for systems and synthetic biology. ACS Synth. Biol. 4(1), 39–47 (2015)
Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)
Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469(7329), 212–215 (2011)
Twycross, J., Band, L., Bennett, M., King, J., Krasnogor, N.: Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst. Biol. 4(1), 34 (2010)
Welch, M., Villalobos, A., Gustafsson, C., Minshull, J.: You’re one in a googol: optimizing genes for protein expression. J. R. Soc. Interface/R. Soc. 6(Suppl 4), S467–S476 (2009)
Acknowledgments
SKo and MG acknowledge the EPSRC (EP/I031812/1) support. CL and SKa are supported by EPSRC (EP/I03157X/1). HF, DS and NK’s work is supported by EPSRC (EP/I031642/1, EP/I031642/2, EP/J004111/1, EP/J004111/2, EP/L001489/1 and EP/L001489/2).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Konur, S. et al. (2017). An Integrated In Silico Simulation and Biomatter Compilation Approach to Cellular Computation. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-33921-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33920-7
Online ISBN: 978-3-319-33921-4
eBook Packages: EngineeringEngineering (R0)