Skip to main content

An Integrated In Silico Simulation and Biomatter Compilation Approach to Cellular Computation

  • Chapter
  • First Online:
Advances in Unconventional Computing

Abstract

Recent advances Synthetic Biology are ushering a new practical computational substrate based on programmable information processing via biological cells. Due to the difficulties in orchestrating complex programmes using myriads of relatively simple, limited and highly stochastic processors such as living cells, robust computational technology to specify, simulate, analyse and compile cellular programs are in demand. We provide the Infobiotics Workbench (Ibw) tool, a software platform developed to model and analyse stochastic compartmentalized systems, which permits using various computational techniques, such as modelling, simulation, verification and biocompilation. We report here the details of our work for modelling, simulation and, for the first time, biocompilation, while verification is reported elsewhere in this book. We consider some basic genetic logic gates to illustrate the main features of the Ibw platform. Our results show that membrane computing provides a suitable formalism for building synthetic biology models. The software platform we developed permits analysing biological systems through the computational methods integrated into the workbench, providing significant advantages in terms of time, and enhanced understanding of biological functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R.: Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2(1), 14 (2006)

    Google Scholar 

  2. Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., Niculescu, I.: Extended simulation and verification platform for kernel P systems. In: 15th International Conference on Membrane Computing. LNCS, vol. 8961, pp. 158–168. Springer, Switzerland (2014)

    Google Scholar 

  3. Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance simulations of kernel P systems. In: Proceedings of the 2014 IEEE 16th International Conference on High Performance Computing and Communication. HPCC ’14, pp. 409–412. France, Paris (2014)

    Google Scholar 

  4. Beal, J., Lu, T., Weiss, R.: Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. PLoS ONE 6(8), e22,490 (2011)

    Google Scholar 

  5. Beal, J., Phillips, A., Densmore, D., Cai, Y.: High-level programming languages for biomolecular systems. In: Design and Analysis of Biomolecular Circuits, pp. 225–252. Springer, New York (2011)

    Google Scholar 

  6. Ben-Yehezkel, T., Rival, A., Raz, O., Cohen, R., Marx, Z., Camara, M., Dubern, J.F., Koch, B., Heeb, S., Krasnogor, N., Delattre, C., Shapiro, E.: Synthesis and cell-free cloning of dna libraries using programmable microfluidics. Nucleic Acids Research pp. first published online October 19, 2015 doi:10.1093/nar/gkv1087 (2015)

  7. Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Perez-Jimenez, M.J., Romero-Campero, F.J.: On P systems as a modelling tool for biological systems. In: Membrane Computing, Lecture Notes in Computer Science, vol. 3850, pp. 114–133. Springer, Heidelberg (2006)

    Google Scholar 

  8. Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson, J.C., Densmore, D.: Eugene—a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS ONE 6(4), e18,882 (2011)

    Google Scholar 

  9. Biofab: International Open Facility Advancing Biotechnology. http://biofab.synberc.org

  10. Blakes, J., Raz, O., Feige, U., Bacardit, J., Widera, P., Ben-Yehezkel, T., Shapiro, E., Krasnogor, N.: Heuristic for maximizing dna reuse in synthetic dna library assembly. ACS Synth. Biol. 8(3), 529–542 (2014)

    Google Scholar 

  11. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheorghe, M.: Infobiotics workbench: A p systems based tool for systems and synthetic biology. In: Applications of Membrane Computing in Systems and Synthetic Biology. Emergence, Complexity and Computation, vol. 7, pp. 1–41. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  12. Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The infobiotics workbench: an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics 27(123), 3323–3324 (2011)

    Article  Google Scholar 

  13. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121(9), 4059–4067 (2004)

    Article  Google Scholar 

  14. Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., Zhuang, X.: Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233) (2015)

    Google Scholar 

  15. Cox, R.S., Surette, M.G., Elowitz, M.B.: Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3(1) (2007)

    Google Scholar 

  16. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695 (2006). http://igraph.sf.net

  17. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model checking kernel P systems. In: 14th International Conference on Membrane Computing, LNCS, vol. 8340, pp. 151–172. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  18. Fellermann, H., Hadorn, M., Füchslin, R.M., Krasnogor, N.: Formalizing modularization and data hiding in synthetic biology. J. Emerg. Technol. Comput. Syst. 11(3), 24:1–24:20 (2014)

    Google Scholar 

  19. Fellermann, H., Krasnogor, N.: Chemical production and molecular computing in addressable reaction compartments. In: Language. Life, Limits, Lecture Notes in Computer Science, vol. 8493, pp. 173–182. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  20. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems and Synthetic Biology. Springer, Switzerland (2014)

    Google Scholar 

  21. Genetic Boolean Gates. http://www.scim.brad.ac.uk/skonur/models/gates

  22. Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P systems for modelling cellular processes. Nat. Comput. 9(2), 457–473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  24. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  25. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  26. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

    Article  Google Scholar 

  27. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  28. iGem: Parts Registry. http://partsregistry.org/

  29. Konur, S., Gheorghe, M.: A property-driven methodology for formal analysis of synthetic biology systems. IEEE/ACM Trans. Comput. Biol. Bioinf. 12, 360–371 (2015)

    Article  Google Scholar 

  30. Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conventional verification for unconventional computing: a genetic XOR gate example. Fundamenta Informaticae 134, 97–110 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qualitative and quantitative analysis of systems and synthetic biology constructs using P systems. ACS Synth. Biol. 4(1), 83–92 (2015)

    Article  Google Scholar 

  32. Konur, S., Ladroue, C., Fellermann, H., Sanassy, D., Mierla, L., Ipate, F., Kalvala, S., Gheorghe, M., Krasnogor, N.: Modeling and analysis of genetic boolean gates using Infobiotics Workbench. In: Verification of Engineered Molecular Devices and Programs, pp. 26–37. Vienna, Austria (2014)

    Google Scholar 

  33. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (2003)

    Article  Google Scholar 

  34. Ladroue, C., Kalvala, S.: Constraint-based genetic compilation. In: Algorithms for Computational Biology, LNBI, vol. 9199. Springer International, Heidelberg (2015)

    Google Scholar 

  35. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M.I., Snoep, J.L., Hucka, M., Le Novère, N., Laibe, C.: BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010)

    Article  Google Scholar 

  36. Li, H., Petzold, L.: Logarithmic direct method for discrete stochastic simulation of chemically reacting systems. Technical report, Department of Computer Science, University of California: Santa Barbara (2006)

    Google Scholar 

  37. McCollum, J.M., Peterson, G.D., Cox, C.D., Simpson, M.L., Samatova, N.F.: The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior. Comput. Biol. Chem. 30(1), 39–49 (2006)

    Article  MATH  Google Scholar 

  38. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface 6(Suppl 4), S437–S450 (2009)

    Article  Google Scholar 

  40. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Ramaswamy, R., Gonzalez-Segredo, N., Sbalzarini, I.F.: A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. J. Chem. Phys. 130(24), 244104 (2009)

    Article  Google Scholar 

  42. Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F., Sole, R.: Distributed biological computation with multicellular engineered networks. Nature 469(7329), 207–211 (2011)

    Article  Google Scholar 

  43. Roberts, R.J., Vincze, T., Posfai, J., Macelis, D.: REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38(Database issue), D234–D236 (2010)

    Google Scholar 

  44. Romero-Campero, F.J., Twycross, J., Camara, M., Bennett, M., Gheorghe, M., Krasnogor, N.: Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci. 20(3), 427–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Romero-Campero, F.J., Twycross, J., Cao, H., Blakes, J., Krasnogor, N.: A multiscale modeling framework based on P systems. In: Membrane Computing, LNCS, vol. 5391, pp. 63–77. Springer, Heidelberg (2009)

    Google Scholar 

  46. Salis, H.M.: The ribosome binding site calculator. In: Synthetic Biology. Part B Computer Aided Design and DNA Assembly, Methods in Enzymology, vol. 498, pp. 19–42. Academic Press, USA (2011)

    Google Scholar 

  47. Sanassy, D., Blakes, J., Twycross, J., Krasnogor, N.: Improving computational efficiency in stochastic simulation algorithms for systems and synthetic biology. In: SynBioCCC. 11th European Conference on Artificial Life (2011)

    Google Scholar 

  48. Sanassy, D., Fellermann, H., Krasnogor, N., Konur, S., Mierlă, L., Gheorghe, M., Ladroue, C., Kalvala, S.: Modelling and stochastic simulation of synthetic biological Boolean gates. In: 16th IEEE International Conference on High Performance Computing and Communications, HPCC ’14, pp. 404–408. Paris, France (2014)

    Google Scholar 

  49. Sanassy, D., Widera, P., Krasnogor, N.: Meta-stochastic simulation of biochemical models for systems and synthetic biology. ACS Synth. Biol. 4(1), 39–47 (2015)

    Article  Google Scholar 

  50. Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)

    Article  Google Scholar 

  51. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469(7329), 212–215 (2011)

    Article  Google Scholar 

  52. Twycross, J., Band, L., Bennett, M., King, J., Krasnogor, N.: Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst. Biol. 4(1), 34 (2010)

    Article  Google Scholar 

  53. Welch, M., Villalobos, A., Gustafsson, C., Minshull, J.: You’re one in a googol: optimizing genes for protein expression. J. R. Soc. Interface/R. Soc. 6(Suppl 4), S467–S476 (2009)

    Google Scholar 

Download references

Acknowledgments

SKo and MG acknowledge the EPSRC (EP/I031812/1) support. CL and SKa are supported by EPSRC (EP/I03157X/1). HF, DS and NK’s work is supported by EPSRC (EP/I031642/1, EP/I031642/2, EP/J004111/1, EP/J004111/2, EP/L001489/1 and EP/L001489/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalio Krasnogor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Konur, S. et al. (2017). An Integrated In Silico Simulation and Biomatter Compilation Approach to Cellular Computation. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics