Abstract
Nature-inspired computation plays an increasingly important role in many areas such as computational intelligence, optimization and data mining. From the perspective of traditional algorithms, such nature-inspired, iterative problem-solving methods are an unconventional approach to optimization. Both the number of algorithms and the popularity have increased significantly in recent years. This chapter provides a critical analysis of some nature-inspired algorithms and strives to identify the most essential characteristics among these algorithms. We also look at different algorithmic structures and ways of generating new solutions in a mathematical framework, which will provide some insight into these algorithms. We also discuss some key open problems concerning nature-inspired metaheuristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamatzky, A., Yang, X.S., Zhao, Y.X.: Slime mould imitates transport networks in China. Int. J. Intell. Comput. Cybern. 6(3), 232–251 (2013)
Adamatzky, A.: Bioevoluation of World Transport Networks. World Scientific Publishing, Singapore (2012)
Ashby, W.R.: Princinples of the self-organizing sysem. In: Von Foerster, H., Zopf Jr., G.W. Pricinples of Self-Organization: Transactions of the University of Illinois Symposium. Pergamon Press, London, UK. pp. 255–278 (1962)
Booker, L., Forrest, S., Mitchell, M., Riolo, R.: Perspectives on Adaptation in Natural and Artificial Systems. Oxford University Press, Oxford (2005)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: Overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)
Clerc, M., Kennedy, J.: The particle swarm – explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrite optimization. Artif. Life 5(2), 137–172 (1999)
Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evol. Comput. 1(1), 19–31 (2011)
Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm and Evol. Comput. 13(1), 34–46 (2013)
Fister, I., Yang, X.-S., Brest, J., Fister Jr., I.: Modified firefly algorithm using quaternion representation. Expert Syst. Appl. 40(18), 7220–7230 (2013)
Fister, I., Yang, X.S., Fister, D., Fister Jr., I.: Firefly algorithm: A brief review of the expanding literature. Cuckoo Search and Firefly Algorithm: Theory and Applications. Studies in Computational Intelligence, pp. 347–360. Springer, Heidelberg (2014)
Fister Jr., I., Yang, X.S., Fister, D., Fister, I.: Cuckoo search: a brief literature review. Cuckoo Search and Firefly Algorithm: Theory and Applications, vol. 516, pp. 49–62. Springer, Heidelber (2014)
Fister Jr., I., Fister, D., Yang, X.S.: A hybrid bat algorithm. Elektrotehniski Vestnik 80(1–2), 1–7 (2013)
Fister Jr., I., Yang, X.S., Ljubič, K., Fister, D., Brest, J., Fister, I.: Towards the novel reasoning among particles in PSO by the use of RDF and SPARQL. Sci. World J. 2014, article ID. 121782, (2014). http://dx.doi.org/10.1155/2014/121782
Fister Jr., I., Fong, S., Brest, J., Fister, I.: A novel hybrid self-adaptive bat algorithm. Sci. World J. 2014, article ID 709738, (2014). http://dx.doi.org/10.1155/2014/709738
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization: harmony search. Simulation 76(2), 60–68 (2001)
Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Anbor (1975)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Passino, K.M.: Bactorial foraging optimization. Int. J. Swarm Intell. Res. 1(1), 1–16 (2010)
Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226(12), 1830–1844 (2007)
Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)
Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firely algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)
Shi, Y.H., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, 4–9 May 1998, Anchorage, AK, IEEE Press, USA, pp. 69-73 (1998)
Storn, R.: On the usage of differential evolution for function optimization. In: Proceedings of the Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS). Berkeley, CA 1996, pp. 519–523 (1996)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Wang, F., He, X.S., Wang, Y., Yang, S.M.: Markov model and convergence analysis based on cuckoo search algorithm. Comput. Eng. 38(11), 180–185 (2012). (in Chinese)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)
Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimisation (NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65-74. Springer, Heidelberg (2010)
Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5), 267–274 (2011)
Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Networked Digital Technologies 2011, Communications in Computer and Information Science, vol. 136, pp. 53–66. Springer, Heidelberg (2011)
Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 1–18 (2012)
Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation, pp. 240–249. Springer, Heidelberg (2012)
Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, USA (2009)
Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modelling Numer. Optim. 1(4), 330–343 (2010)
Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. In: Computers and Operations Research, 40(6), pp. 1616-1624 (2013)
Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)
Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Comput. Appl. 23(7–8), 2051–2057 (2013)
Yang, X.S., Karamanoglu, M., He, X.S.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)
Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, London (2014)
Yousif, A., Abdullah, A.H., Nor, S.M., Abdelaziz, A.A.: Scheduling jobs on grid computing using firefly algorithm. J. Theoret. Appl. Inf. Technol. 33(2), 155–164 (2011)
Zhang, X.G., Adamatzky, A., Chan, F.T., Deng, Y., Yang, H., Yang, X.S., Tsompanas, M.I., Sirakoulis, G.C., Mahadevan, S.: A biologically inspired network design model, Scientific Reports, vol. 5, Article number 10794, June (2015). http://www.nature.com/srep/2015/150604/srep10794/full/srep10794.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Yang, XS. (2017). Nature-Inspired Computation: An Unconventional Approach to Optimization. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-33921-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33920-7
Online ISBN: 978-3-319-33921-4
eBook Packages: EngineeringEngineering (R0)