Skip to main content

Nature-Inspired Computation: An Unconventional Approach to Optimization

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

Nature-inspired computation plays an increasingly important role in many areas such as computational intelligence, optimization and data mining. From the perspective of traditional algorithms, such nature-inspired, iterative problem-solving methods are an unconventional approach to optimization. Both the number of algorithms and the popularity have increased significantly in recent years. This chapter provides a critical analysis of some nature-inspired algorithms and strives to identify the most essential characteristics among these algorithms. We also look at different algorithmic structures and ways of generating new solutions in a mathematical framework, which will provide some insight into these algorithms. We also discuss some key open problems concerning nature-inspired metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamatzky, A., Yang, X.S., Zhao, Y.X.: Slime mould imitates transport networks in China. Int. J. Intell. Comput. Cybern. 6(3), 232–251 (2013)

    Article  MathSciNet  Google Scholar 

  2. Adamatzky, A.: Bioevoluation of World Transport Networks. World Scientific Publishing, Singapore (2012)

    Google Scholar 

  3. Ashby, W.R.: Princinples of the self-organizing sysem. In: Von Foerster, H., Zopf Jr., G.W. Pricinples of Self-Organization: Transactions of the University of Illinois Symposium. Pergamon Press, London, UK. pp. 255–278 (1962)

    Google Scholar 

  4. Booker, L., Forrest, S., Mitchell, M., Riolo, R.: Perspectives on Adaptation in Natural and Artificial Systems. Oxford University Press, Oxford (2005)

    Google Scholar 

  5. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: Overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)

    Article  Google Scholar 

  6. Clerc, M., Kennedy, J.: The particle swarm – explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  7. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrite optimization. Artif. Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  8. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  9. Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm and Evol. Comput. 13(1), 34–46 (2013)

    Article  Google Scholar 

  10. Fister, I., Yang, X.-S., Brest, J., Fister Jr., I.: Modified firefly algorithm using quaternion representation. Expert Syst. Appl. 40(18), 7220–7230 (2013)

    Article  Google Scholar 

  11. Fister, I., Yang, X.S., Fister, D., Fister Jr., I.: Firefly algorithm: A brief review of the expanding literature. Cuckoo Search and Firefly Algorithm: Theory and Applications. Studies in Computational Intelligence, pp. 347–360. Springer, Heidelberg (2014)

    Google Scholar 

  12. Fister Jr., I., Yang, X.S., Fister, D., Fister, I.: Cuckoo search: a brief literature review. Cuckoo Search and Firefly Algorithm: Theory and Applications, vol. 516, pp. 49–62. Springer, Heidelber (2014)

    Google Scholar 

  13. Fister Jr., I., Fister, D., Yang, X.S.: A hybrid bat algorithm. Elektrotehniski Vestnik 80(1–2), 1–7 (2013)

    MATH  Google Scholar 

  14. Fister Jr., I., Yang, X.S., Ljubič, K., Fister, D., Brest, J., Fister, I.: Towards the novel reasoning among particles in PSO by the use of RDF and SPARQL. Sci. World J. 2014, article ID. 121782, (2014). http://dx.doi.org/10.1155/2014/121782

  15. Fister Jr., I., Fong, S., Brest, J., Fister, I.: A novel hybrid self-adaptive bat algorithm. Sci. World J. 2014, article ID 709738, (2014). http://dx.doi.org/10.1155/2014/709738

  16. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  17. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Anbor (1975)

    Google Scholar 

  18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  19. Passino, K.M.: Bactorial foraging optimization. Int. J. Swarm Intell. Res. 1(1), 1–16 (2010)

    Article  Google Scholar 

  20. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226(12), 1830–1844 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  22. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firely algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)

    Article  Google Scholar 

  23. Shi, Y.H., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, 4–9 May 1998, Anchorage, AK, IEEE Press, USA, pp. 69-73 (1998)

    Google Scholar 

  24. Storn, R.: On the usage of differential evolution for function optimization. In: Proceedings of the Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS). Berkeley, CA 1996, pp. 519–523 (1996)

    Google Scholar 

  25. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, F., He, X.S., Wang, Y., Yang, S.M.: Markov model and convergence analysis based on cuckoo search algorithm. Comput. Eng. 38(11), 180–185 (2012). (in Chinese)

    Google Scholar 

  27. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  28. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)

    Google Scholar 

  29. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimisation (NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65-74. Springer, Heidelberg (2010)

    Google Scholar 

  30. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5), 267–274 (2011)

    Article  Google Scholar 

  31. Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Networked Digital Technologies 2011, Communications in Computer and Information Science, vol. 136, pp. 53–66. Springer, Heidelberg (2011)

    Google Scholar 

  32. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 1–18 (2012)

    Article  Google Scholar 

  33. Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation, pp. 240–249. Springer, Heidelberg (2012)

    Google Scholar 

  34. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, USA (2009)

    Google Scholar 

  35. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modelling Numer. Optim. 1(4), 330–343 (2010)

    Article  MATH  Google Scholar 

  36. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. In: Computers and Operations Research, 40(6), pp. 1616-1624 (2013)

    Google Scholar 

  37. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)

    Article  Google Scholar 

  38. Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Comput. Appl. 23(7–8), 2051–2057 (2013)

    Article  Google Scholar 

  39. Yang, X.S., Karamanoglu, M., He, X.S.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  40. Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, London (2014)

    MATH  Google Scholar 

  41. Yousif, A., Abdullah, A.H., Nor, S.M., Abdelaziz, A.A.: Scheduling jobs on grid computing using firefly algorithm. J. Theoret. Appl. Inf. Technol. 33(2), 155–164 (2011)

    Google Scholar 

  42. Zhang, X.G., Adamatzky, A., Chan, F.T., Deng, Y., Yang, H., Yang, X.S., Tsompanas, M.I., Sirakoulis, G.C., Mahadevan, S.: A biologically inspired network design model, Scientific Reports, vol. 5, Article number 10794, June (2015). http://www.nature.com/srep/2015/150604/srep10794/full/srep10794.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-She Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, XS. (2017). Nature-Inspired Computation: An Unconventional Approach to Optimization. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics