Skip to main content

Antibody Detection: Principles and Applications

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology
  • 1451 Accesses

Abstract

Antibody detection technologies have been developed to identify host response to the infectious agents or microorganisms and are widely used for the laboratory diagnosis of infectious diseases with improved sensitivity and specificity. In general, antibody detection methods have been utilized for detection and immune response of slow-growing, difficult-to-culture, uncultivatable, or emerging infectious agents, specifically certain viruses. Emerging antibody detection methods, such as rapid or handheld assay, antigen-antibody combination assay, as well as multiplexed flow cytometry, have been utilized in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75.

    Article  CAS  Google Scholar 

  2. Peruski AH, Peruski LF Jr. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol. 2003;10:506–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Andreotti PE, Ludwig GV, Peruski AH, Tuite JJ, Morse SS, Peruski LF Jr. Immunoassay of infectious agents. BioTechniques. 2003;35:850–9.

    Article  CAS  Google Scholar 

  4. Kricka LJ. Chemiluminescent and bioluminescent techniques. Clin Chem. 1991;37:1472–81.

    CAS  PubMed  Google Scholar 

  5. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay, ELISA: quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol Methods. 1972;109:129–35.

    CAS  Google Scholar 

  6. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8:871–4.

    Article  CAS  Google Scholar 

  7. Wang YF, Eaton ME, Schuetz AN, Nesheim SR. Human immunodeficiency virus. Washington, DC: ASM Press; 2009.

    Google Scholar 

  8. Zuk RF, Ginsberg VK, Gouts T, et al. Enzyme immunochromatography: a quantitative immunoassay requiring no instrumentation. Clin Chem. 1985;31:1144–50.

    CAS  PubMed  Google Scholar 

  9. Kricka LJ. The clinical and research potential of bioluminescence and chemiluminescence in medicine. Chichester: Wiley; 1996.

    Google Scholar 

  10. Weeks I, Wodhead JS. Chemiluminescent assays based on acridinium labels. Chichester: Wiley; 1991.

    Google Scholar 

  11. Yu H. Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. J Immunol Methods. 1998;218:1–8.

    Article  CAS  Google Scholar 

  12. Haukanes BL, Kyam B. Application of magnetic beads in bioassays. Biotechnology (N Y). 1993;11:60–3.

    CAS  Google Scholar 

  13. Blackburn GF, Shah HP, Kenten JH, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnosis. Clin Chem. 1991;37:1534–9.

    CAS  PubMed  Google Scholar 

  14. Yang H, Leland JK, Massey RJ. Electrochemiluminescence: a new diagnostic and research tool. ECL detection technology promises scientist new “yardsticks” for quantification. Biotechnology (N Y). 1994;12:193–4.

    CAS  Google Scholar 

  15. Peruski AH, Johnson LH, Peruski LF Jr. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods. 2002;263:35–41.

    Article  CAS  Google Scholar 

  16. Aggerbeck H, Norgaard-Pedersen B, Heron I. Simultaneous quantitation of diphtheria and tetanus antibodies by double antigen, time-resolved fluorescence immunoassay. J Immunol Methods. 1996;190:171–83.

    Article  CAS  Google Scholar 

  17. Hemmila I, Dakubu S, Mukkala VM, Siitari H, Lovgren T. Europium as a label in time-resolved immuofluorometric assays. Anal Biochem. 1984;137:335–43.

    Article  CAS  Google Scholar 

  18. McHugh TM. Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes. Methods Cell Biol. 1994;42:575–95.

    Google Scholar 

  19. Horan PK, Wheeless LL. Quantitative single cell analysis and sorting. Science. 1977;198:149–57.

    Article  CAS  Google Scholar 

  20. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR. Advanced multiplexed analysis with the FlowMetrix system. Clin Chem. 1997;43:1749–56.

    CAS  PubMed  Google Scholar 

  21. Staros JV, Wright RW, Swingle DM. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem. 1986;156:220–2.

    Article  CAS  Google Scholar 

  22. Jones LP, Zheng HQ, Karron RA, Peret TCT, Tsou C, Anderson LA. Multiplex assay for detection of strain-specific antibodies against the two variable regions of the G protein of Respiratory Syncytial Virus. Clin Diagn Lab Immunol. 2002;9:633–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vignali DA. Multiplexed particle-based flow cytometric assays. J Immunol Methods. 2000;243:243–55.

    Article  CAS  Google Scholar 

  24. Mandy FF, Nakamura T, Bergeron M, Sekiguchi K. Overview and application suspension array technology. Clin Lab Med. 2001;21:713–29.

    CAS  PubMed  Google Scholar 

  25. Nieman T. Chemiluminescence: theory and instrumentation, overview. In: Encyclopedia of analytical science. Orlando: Academic Press; 1995. p. 608–13.

    Google Scholar 

  26. Campbell AK. Detection and quantification of chemiluminescence. Chichester: Ellis Horwood; 1988.

    Google Scholar 

  27. Berthrold F. Instrumentation for chemiluminescence immunoassays. Boca Raton: CRC Press; 1990.

    Google Scholar 

  28. Nuwayhid NF. Laboratory tests for detection of human immunodeficiency virus type 1 infection. Clin Diag Lab Immunol. 1995;2:637–45.

    CAS  Google Scholar 

  29. Carson RT, Vignali DA. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J Immunol Methods. 1999;227:41–52.

    Article  CAS  Google Scholar 

  30. Nielsen K, Bryson YJ. Diagnosis of HIV infection in children. Pediatr Clin N Am. 2000;47:39–63.

    Article  CAS  Google Scholar 

  31. Stafylis C, Klausner JD. Evaluation of two 4th generation point-of-care assays for the detection of Human Immunodeficiency Virus infection. PLoS One. 2017;12:e0183944.

    Article  Google Scholar 

  32. MMWR. Guidelines for surveillance, prevention, and control of West Nile virus infection—United States. MMWR Morb Mortal Wkly Rep. 2000;49:25–8.

    Google Scholar 

  33. Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med. 2001;344:1807–14.

    Article  CAS  Google Scholar 

  34. Louie B, Pandori MW, Wong E, Klausner JD, Liska S. Use of an acute seroconversion panel to evaluate a third-generation enzyme-linked immunoassay for detection of human immunodeficiency virus-specific antibodies relative to multiple other assays. J Clin Microbiol. 2006;44:1856–8.

    Article  CAS  Google Scholar 

  35. Pandori MW, Hackett J Jr, Louie B, et al. Assessment of the ability of a fourth-generation immunoassay for human immunodeficiency virus (HIV) antibody and p24 antigen to detect both acute and recent HIV infections in a high-risk setting. J Clin Microbiol. 2009;47:2639–42.

    Article  Google Scholar 

  36. Tunkel AR, Glaser CA, Bloch KC, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47:303–27.

    Article  CAS  Google Scholar 

  37. Dauphin G, Zientara S. West Nile virus: recent trends in diagnosis and vaccine development. Vaccine. 2007;25:5563–76.

    Article  CAS  Google Scholar 

  38. Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, Roehrig JT. Use of immunoglobulin M cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol. 2002;9:544–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindsey HS, Calisher CH, Mathews JH. Serum dilution neutralization test for California group virus identification and serology. J Clin Microbiol. 1976;4:503–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Herrmann S, Leshem B, Landes S, Rager-Zisman B, Marks RS. Chemiluminescent optical fiber immunosensor for the detection of anti-West Nile virus IgG. Talanta. 2005;66:6–14.

    Article  CAS  Google Scholar 

  41. Jackson JB, Parsons JS, Nichols LS, Knoble N, Kennedy S, Piwowar EM. Detection of human immunodeficiency virus type 1 (HIV-1) antibody by western blotting and HIV-1 DNA by PCR in patients with AIDS. J Clin Microbiol. 1997;35:1118–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fordan S, Bennett B, Lee M, Crowe S. Comparative performance of the Geenius™ HIV-1/HIV-2 supplemental test in Florida’s public health testing population. J Clin Virol. 2017;91:79–83.

    Article  Google Scholar 

  43. Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology. 2009;49:1335–74.

    Article  CAS  Google Scholar 

  44. Delaney KP, Branson BM, Uniyal A, et al. Evaluation of the performance characteristics of 6 rapid HIV antibody tests. Clin Infect Dis. 2011;52:257–63.

    Article  CAS  Google Scholar 

  45. Lee SR, Yearwood GD, Guillon GB, et al. Evaluation of a rapid, point-of-care test device for the diagnosis of hepatitis C infection. J Clin Virol. 2010;48:15–7.

    Article  CAS  Google Scholar 

  46. Livant E, Heaps A, Kelly C, Maharaj R, Samsunder N, Nhlangulela L, Karugaba P, Panchia R, Marrazzo J, Chirenje ZM, Parikh UM; VOICE Study Team. The fourth generation AlereTM HIV Combo rapid test improves detection of acute infection in MTN-003 (VOICE) samples. J Clin Virol. 2017;94:15–21.

    Google Scholar 

  47. Masciotra S, Luo W, Westheimer E, Cohen SE, Gayd CL, Hall L, Pan Y, Peters PJ, Owen SM. Performance evaluation of the FDA-approved DetermineTM HIV-1/2Ag/Ab Combo assay using plasma and whole blood specimens. J Clin Virol. 2017;91:95–100.

    Article  CAS  Google Scholar 

  48. Adams S, Luo W, Wesolowski L, Cohen SE, Peters PJ, Owen SM, Masciotra S. Performance evaluation of the point-of-care INSTITMHIV-1/2 antibody test in early and established HIV infections. J Clin Virol. 2017;91:90–4.

    Article  CAS  Google Scholar 

  49. Maple PA, Gray J, Breuer J, Kafatos G, Parker S, Brown D. Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay. Clin Vaccine Immunol. 2006;13:214–8.

    Article  CAS  Google Scholar 

  50. Chris Maple PA, Gray J, Brown K, Brown D. Performance characteristics of a quantitative, standardised varicella zoster IgG time resolved fluorescence immunoassay (VZV TRFIA) for measuring antibody following natural infection. J Virol Methods. 2009;157:90–2.

    Article  CAS  Google Scholar 

  51. McDonald SL, Maple PA, Andrews N, et al. Evaluation of the time resolved fluorescence immunoassay (TRFIA) for the detection of varicella zoster virus (VZV) antibodies following vaccination of healthcare workers. J Virol Methods. 2011;172:60–5.

    Article  CAS  Google Scholar 

  52. Gomez E, Jespersen DJ, Harring JA, Binnicker MJ. Evaluation of the Bio-Rad BioPlex 2200 syphilis multiplex flow immunoassay for the detection of IgM- and IgG-class antitreponemal antibodies. Clin Vaccine Immunol. 2010;17:966–8.

    Article  CAS  Google Scholar 

  53. Berth M, Bosmans E. Comparison of three automated immunoassay methods for the determination of Epstein-Barr virus-specific immunoglobulin M. Clin Vaccine Immunol. 2010;17:559–63.

    Article  CAS  Google Scholar 

  54. Binnicker MJ, Jespersen DJ, Rollins LO. Evaluation of the Bio-Rad BioPlex measles, mumps, rubella, and varicella-zoster virus IgG multiplex bead immunoassay. Clin Vaccine Immunol. 2011;18:1524–6.

    Article  CAS  Google Scholar 

  55. Hatchette TF, Scholz H, Bolotin S, Crowcroft NS, Jackson C, McLachlan E, Severini A. Calibration and evaluation of quantitative antibody titers for measles virus by using the BioPlex 2200. Clin Vaccine Immunol. 2017;24pii:e00269–16.

    Google Scholar 

  56. Fonseca BP, Marques CF, Nascimento LD, et al. Development of a multiplex bead-based assay for detection of hepatitis C virus. Clin Vaccine Immunol. 2011;18:802–6.

    Article  CAS  Google Scholar 

  57. Kellar KL, Iannone MA. Multiplexed microsphere-based flow cytometric assays. Exp Hematol. 2002;30:1227–37.

    Article  CAS  Google Scholar 

  58. Martins TB. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin Diagn Lab Immunol. 2002;9:41–5.

    PubMed  PubMed Central  Google Scholar 

  59. Binnicker MJ, Jespersen DJ, Rollins LO. Treponema-specific tests for Serodiagnosis of syphilis: comparative evaluation of seven assays. J Clin Microbiol. 2011;49:1313–7.

    Article  CAS  Google Scholar 

  60. Quinn CP, Semenova VA, Elie CM, et al. Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg Infect Dis. 2002;8:1103–10.

    Article  CAS  Google Scholar 

  61. Biagini RE, Schlottmann SA, Sammons DL, et al. Method for simultaneous measurement of antibodies to 23 pneumococcal capsular polysaccharides. Clin Diagn Lab Immunol. 2003;10:744–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Robin L, Mboumba Bouassa RS, Nodjikouambaye ZA, Charmant L, Matta M, Simon S, Filali M, Mboup S, Bélec L. Analytical performances of simultaneous detection of HIV-1, HIV-2 and hepatitis C- specific antibodies and hepatitis B surface antigen (HBsAg) by multiplex immunochromatographic rapid test with serum samples: a cross-sectional study. J Virol Methods. 2018;253:1–4.

    Article  CAS  Google Scholar 

  63. Bellisario R, Colinas RJ, Pass KA. Simultaneous measurement of antibodies to three HIV-1 antigens in newborn dried blood-spot specimens using a multiplexed microsphere-based immunoassay. Early Hum Dev. 2001;64:21–5.

    Article  CAS  Google Scholar 

  64. Faucher S, Martel A, Sherring A, et al. Protein bead array for the detection of HIV-1 antibodies from fresh plasma and dried-blood-spot specimens. Clin Chem. 2004;50:1250–3.

    Article  CAS  Google Scholar 

  65. Lukacs Z, Dietrich A, Ganschow R, Kohlschutter A, Kruithof R. Simultaneous determination of HIV antibodies, hepatitis C antibodies, and hepatitis B antigens in dried blood spots—a feasibility study using a multi-analyte immunoassay. Clin Chem Lab Med. 2005;43:141–5.

    Article  CAS  Google Scholar 

  66. Pickering JW, Martins TB, Greer RW, et al. A multiplexed fluorescent microsphere immunoassay for antibodies to pneumococcal capsular polysaccharides. Am J Clin Pathol. 2002;117:589–96.

    Article  CAS  Google Scholar 

  67. Shoma S, Verkaik NJ, de Vogel CP, et al. Development of a multiplexed bead-based immunoassay for the simultaneous detection of antibodies to 17 pneumococcal proteins. Eur J Clin Microbiol Infect Dis. 2011;30:521–6.

    Article  CAS  Google Scholar 

  68. Binnicker MJ, Jespersen DJ, Harring JA, Rollins LO, Beito EM. Evaluation of a multiplex flow immunoassay for detection of epstein-barr virus-specific antibodies. Clin Vaccine Immunol. 2008;15:1410–3.

    Article  CAS  Google Scholar 

  69. Fiore M, Mitchell J, Doan T, et al. The Abbott IMx automated benchtop immunochemistry analyzer system. Clin Chem. 1988;34:1726–32.

    CAS  PubMed  Google Scholar 

  70. Hennig H, Schlenke P, Kirchner H, Bauer I, Schulte-Kellinghaus B, Bludau H. Evaluation of newly developed microparticle enzyme immunoassays for the detection of HCV antibodies. J Virol Methods. 2000;84:181–90.

    Article  CAS  Google Scholar 

  71. Lazzarotto T, Galli C, Pulvirenti R, et al. Evaluation of the Abbott AxSYM cytomegalovirus (CMV) immunoglobulin M (IgM) assay in conjunction with other CMV IgM tests and a CMV IgG avidity assay. Clin Diagn Lab Immunol. 2001;8:196–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li TM, Chuang T, Tse S, Hovanec-Burns D, El Shami AS. Development and validation of a third generation allergen-specific IgE assay on the continuous random access IMMULITE 2000 analyzer. Ann Clin Lab Sci. 2004;34:67–74.

    CAS  PubMed  Google Scholar 

  73. MMWR. Discordant results from reverse sequence syphilis screening—five laboratories, United States, 2006–2010. MMWR Morb Mortal Wkly Rep. 2011;60:133–7.

    Google Scholar 

  74. Marangoni A, Sambri V, Storni E, D’Antuono A, Negosanti M, Cevenini R. Treponema pallidum surface immunofluorescence assay for serologic diagnosis of syphilis. Clin Diagn Lab Immunol. 2000;7:417–21.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun F. (Wayne) Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

(Wayne) Wang, Y.F. (2018). Antibody Detection: Principles and Applications. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_6

Download citation

Publish with us

Policies and ethics