Skip to main content

Laboratory Automation in Clinical Bacteriology

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology


Automation in clinical bacteriology has been neglected for many years until the emergence of innovative technologies and laboratories consolidation which have triggered the development and implementation of different automated solution for bacteriology. The commercialized automated systems can be categorized in different level of automation covering partially or totally multiple laboratory activities from sample inoculation to agar plate incubation, digital imaging, and reading. Moreover, the major manufacturers of automated systems are working on the development or various hardware and software solutions that will further improve the level of automation including digital imaging and expert system applications for auto-release and/or support for human validation of laboratory results.

Thus, the commercialized systems and their future developments promise to provide a significant improvement of laboratory productivity, quality, and time to report results while decreasing errors, analytical variations, and laboratory costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Forsman RW. Why is the laboratory an afterthought for managed care organizations? Clin Chem. 1996;42(5):813–6.

    CAS  PubMed  Google Scholar 

  2. Wians FH. Clinical laboratory tests: which, why, and what do the results mean? Labmedicine. 2009;40(2):105.

    Google Scholar 

  3. Williams RE, Trotman RE. Automation in diagnostic bacteriology. J Clin Pathol Suppl. 1969;3:8–13.

    Article  CAS  Google Scholar 

  4. Tilton RC, Ryan RW. Evaluation of an automated agar plate streaker. J Clin Microbiol. 1978;7(3):298–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Croxatto A, Dijkstra K, Prod'hom G, Greub G. Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation. J Clin Microbiol. 2015;53(7):2298–307.

    Article  CAS  Google Scholar 

  6. Croxatto A, Prod'hom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in clinical bacteriology: what system to choose? Clin Microbiol Infect. 2016;22(3):217–35.

    Article  CAS  Google Scholar 

  7. Croxatto A, Marcelpoil R, Orny C, Morel D, Prod’hom G, Greub G. Towards automated detection, quantification and identification of microbial growth in clinical bacteriology: a proof of concept. Biomed J. 2017;40(6):317–28.

    Article  Google Scholar 

  8. Faron ML, Buchan BW, Coon C, Liebregts T, van Bree A, Jansz AR, et al. Automatic digital analysis of chromogenic media for vancomycin-resistant-enterococcus screens using Copan WASPLab. J Clin Microbiol. 2016;54(10):2464–9.

    Article  Google Scholar 

  9. Faron ML, Buchan BW, Vismara C, Lacchini C, Bielli A, Gesu G, et al. Automated scoring of chromogenic media for detection of methicillin-resistant Staphylococcus aureus by use of WASPLab image analysis software. J Clin Microbiol. 2016;54(3):620–4.

    Article  CAS  Google Scholar 

  10. Bourbeau PP, Swartz BL. First evaluation of the WASP, a new automated microbiology plating instrument. J Clin Microbiol. 2009;47(4):1101–6.

    Article  CAS  Google Scholar 

  11. Froment P, Marchandin H, Vande Perre P, Lamy B. Automated versus manual sample inoculations in routine clinical microbiology: a performance evaluation of the fully automated InoqulA instrument. J Clin Microbiol. 2014;52(3):796–802.

    Article  CAS  Google Scholar 

  12. Iversen J, Stendal G, Gerdes CM, Meyer CH, Andersen CO, Frimodt-Moller N. Comparative evaluation of inoculation of urine samples with the Copan WASP and BD Kiestra InoqulA instruments. J Clin Microbiol. 2016;54(2):328–32.

    Article  CAS  Google Scholar 

  13. Jones G, Matthews R, Cunningham R, Jenks P. Comparison of automated processing of flocked swabs with manual processing of fiber swabs for detection of nasal carriage of Staphylococcus aureus. J Clin Microbiol. 2011;49(7):2717–8.

    Article  Google Scholar 

  14. Mischnik A, Mieth M, Busch CJ, Hofer S, Zimmermann S. First evaluation of automated specimen inoculation for wound swab samples by use of the Previ Isola system compared to manual inoculation in a routine laboratory: finding a cost-effective and accurate approach. J Clin Microbiol. 2012;50(8):2732–6.

    Article  Google Scholar 

  15. Quiblier C, Jetter M, Rominski M, Mouttet F, Bottger EC, Keller PM, et al. Performance of Copan WASP for routine urine microbiology. J Clin Microbiol. 2016;54(3):585–92.

    Article  CAS  Google Scholar 

  16. Hombach M, Jetter M, Blochliger N, Kolesnik-Goldmann N, Bottger EC. Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. J Antimicrob Chemother. 2017;72(6):1659–68.

    Article  CAS  Google Scholar 

  17. Bielli A, Lacchini C, Vismara C, Lombardi G, Sironi MC, Gesu G. WASPLab urine validation study: comparison between 16 and 24 hours of incubation. 25th European Congress of Clinical Microbiology and Infectious Disease 2015: Abstract EVO535.

    Google Scholar 

  18. Mutters NT, Hodiamont CJ, de Jong MD, Overmeijer HP, van den Boogaard M, Visser CE. Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice. Ann Lab Med. 2014;34(2):111–7.

    Article  Google Scholar 

  19. Bentley N, Farrington M, Doughton R, Pearce D. Automating the bacteriology laboratory. 21st European Congress of Clinical Microbiology and Infectious Disease 2011: Abstract P-1792.

    Google Scholar 

  20. Humphrey G, Malone C, Gough H, Awadel-Kariem FM. Experience with KIESTRA’s total lab automation solution to meet the challenge of universal MRSA screening for Lister Hospital, a large UK district general hospital. 21st European Congress of Clinical Microbiology and Infectious Disease 2011: Abstract P-1793.

    Google Scholar 

  21. Croxatto A, Greub G. Project management: importance for diagnostic laboratories. Clin Microbiol Infect. 2017;23(7):434–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Antony Croxatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Croxatto, A. (2018). Laboratory Automation in Clinical Bacteriology. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham.

Download citation

Publish with us

Policies and ethics