Advertisement

Introduction to String Theory

  • Edouard B. Manoukian
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

A string, whether open or closed, as it moves in spacetime, it sweeps out a two-dimensional surface called a worldsheet. String Theory is a quantum field theory ​ which operates on this two-dimensional worldsheet with remarkable consequences in spacetime itself, albeit in higher dimensions. The strings are supposedly very small in extension and may “appear” almost point-like if they are indeed very small, say, of the order of Planck length. Since no experiments can probe distances of the order of the Planck length, such a string in present day experiments is considered to be point-like. What is remarkable about string theory is that particles that are needed to describe the dynamics of elementary particles arise naturally in the mass spectra of oscillating strings, and are not, a priori, assumed to exist or put in by hand in the underlying theories.

Recommended Reading

  1. Bailin, D., & Love, A. (1994). Supersymmetric gauge field theory and string theory. Bristol: Institute of Physics Publishing,CrossRefzbMATHGoogle Scholar
  2. Becker, K, Becker, M., & Schwarz, J. H. (2006). String theory and M-theory: A modern introduction. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  3. Dine, M. (2007). Supersymmetry and string theory: Beyond the standard model. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  4. Elizalde, E. (1995). Ten applications of spectral zeta functions. Berlin: Springer.zbMATHGoogle Scholar
  5. Elizalde, E., Odintsov, S. D., Romeo, A, Bytsenko, A. A., & Zirbini, S. (1994). Zeta regularization techniques with applications. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  6. Manoukian, E. B. (2012). All the fundamental massless bosonic fields in bosonic string theory. Fortschritte der Physik, 60, 329–336.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. Manoukian, E. B. (2012). All the fundamental massless bosonic fields in superstring theory. Fortschritte der Physik, 60, 337–344.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Manoukian, E. B. (2012). All the fundamental massless fermion fields in superstring theory. Journal of Modern Physics, 3, 682–685.ADSCrossRefzbMATHGoogle Scholar
  9. Manoukian, E. B. (2016). Quantum field theory I ​: Foundations and abelian and non-abelian gauge theories. Dordrecht: Springer.zbMATHGoogle Scholar
  10. Polchinski, J. (2005). Superstring theory (Vols. I and II). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  11. Zwiebach, B. (2009). A first course in string theory. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar

References

  1. 1.
    Adesi, V. B., & Zerbini, S. (2002). Analytic continuation of the Hurwitz Zeta function with physical application. Journal of Mathematical Physics, 43, 3759–3765.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aharoni, O., et al. (2008). N = 6 superconformal Chern-Simons matter theories, M2-Branes and their gravity duals. JHEP, 0810, 091.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amati, D., Ciafaloni, M., & Veneziano, G. (1987). Superstring collisions at Planckian energies. Physics Letters B, 197, 81–88.ADSCrossRefGoogle Scholar
  4. 4.
    Amati, D., Ciafaloni, M., & Veneziano, G. (1988). Classical and quantum effects from Planckian energy superstring collisions. International Journal of Modern Physics, 3, 1615–1661.ADSCrossRefGoogle Scholar
  5. 5.
    Bailin, D., & Love, A. (1994). Supersymmetric gauge field theory and string theory. Bristol: Institute of Physics Publishing.CrossRefzbMATHGoogle Scholar
  6. 6.
    Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74, 825–874.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen, H. (2007). Number theory. volume II: Analytic and modern tools. New York: Springer.zbMATHGoogle Scholar
  8. 8.
    Cremmer, E., Julia, B., & Scherk, J. (1978). Supergravity theory in eleven-dimensions. Physics Letters B, 76, 409–412.ADSCrossRefGoogle Scholar
  9. 9.
    Di Vecchia, P. (2008). The birth of string theory. In M. Gasperini & J. Maharana (Eds.), String theory and fundamental interactions: Gabriele Veneziano and theoretical physics: Historical and contemporary perspectives. Lecture notes in physics (Vol. 737, pp. 59–118). Berlin: Springer.Google Scholar
  10. 10.
    Duff, M. J. (1996). M-theory (The theory formerly known as superstrings). International Journal of Modern Physics A, 11, 5623–5642. hep–th/9608117.Google Scholar
  11. 11.
    Elizalde, E. (1995). Ten physical applications of spectral zeta functions. Berlin: Springer.zbMATHGoogle Scholar
  12. 12.
    Elizalde, E., Odintsov, S. D., Romeo, A., Bytsenko, A. A., & Zerbini, S. (1994). Zeta regularization techniques with applications. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  13. 13.
    Gliozzi, F., Scherk, J., & Olive, D. (1976). Supergravity and the spinor dual model. Physics Letters B, 65, 282–286.ADSCrossRefGoogle Scholar
  14. 14.
    Gliozzi, F., Scherk, J., & Olive, D. (1977). Supersymmetry, supergravity theories and the dual spinorl model. Nuclear Physics B, 22, 253–290.ADSCrossRefGoogle Scholar
  15. 15.
    Goto, T. (1971). Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Progress in Theoretical Physics, 46, 1560–1569.ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Green, M. B., & Schwarz, J. H. (1981). Supersymmetrical dual string theory. Nuclear Physics B 181, 502–530.ADSCrossRefGoogle Scholar
  17. 17.
    Green, M. B., & Schwarz, J. H. (1982). Supersymmetrical string theories. Physics Letters B, 109, 444–448.ADSCrossRefGoogle Scholar
  18. 18.
    Green, M. B., Schwarz, J. H., & Witten, E. (1987). Superstring theory (Vols.1 and 2). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  19. 19.
    Gross, D. J., Harvey, J. A., Martinec, E. J., & Rhom, R. (1985). Heterotic string theory (I). The free heterotic string. Nuclear Physics B, 256, 253–284.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gross, D. J., Harvey, J. A., Martinec, E. J., & Rohm, R. (1985). The heterotic string. Physical Reviews Letters, 54, 502–505.ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gubser, S. S., Klebanov, I. R., & Polyakov, A. M. (1998). Gauge theory correlations from non-critical string theory. Physics Letters B, 428, 105–114. (hep-th/9802150).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Horowitz, G., Lowe, D. A., & Maldacena, J. (1996). Statistical entropy of non-extremal four dimensional black holes and U-duality. Physical Review Letters, 77, 430–433.ADSCrossRefGoogle Scholar
  23. 23.
    Horowitz, G. T. (2005). Spacetime in string theory. New Journal of Physics, 7(1–13), 201.ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Lovelace, C., & Squires, E. (1970). Veneziano theory. Proceedings of the Royal Society of London A, 318, 321–353.Google Scholar
  25. 25.
    Maldacena, J. (1998). The large N limit of superconformal theories and gravitation. Advances in Theoretical and Mathematical Physics, 2, 231–252. (hep-th/9711200).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Manoukian, E. B. (2012). All the fundamental massless bosonic fields in bosonic string theory. Fortschritte der Physik, 60, 329–336.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Manoukian, E. B. (2012). All the fundamental bosonic massless fields in superstring theory. Fortschritte der Physik, 60, 337–344.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Manoukian, E. B. (2012). All the fundamental massless fermion fields in superstring theory: A rigorous analysis. Journal of Modern Physics, 3, 1027–1030.ADSCrossRefGoogle Scholar
  29. 29.
    Manoukian, E. B. (2016). Quantum field theory I: Foundations and abelian and non-abelian gauge theories. Dordrecht: Springer.zbMATHGoogle Scholar
  30. 30.
    Nambu, Y. (1969). In Proceedings of International Conference on Symmetries and Quark Models (p. 269). New York: Wayne State University, Gordon and Breach.Google Scholar
  31. 31.
    Nambu, Y. (1970). Duality and electrodynamics. In T. Eguchi & K. Nishijima (Eds.), Broken Symmetry: Selected Papers of Y. Nambu. Singapore: World Scientific, 1995.Google Scholar
  32. 32.
    Neveu, A., & Schwarz, J. H. (1971). Factorizable dual model of pions. Nuclear Physics B, 31, 86–112.ADSCrossRefGoogle Scholar
  33. 33.
    Nielsen, H. (1970). International Conference on High Energy Physics, Kiev Conference, Kiev.Google Scholar
  34. 34.
    Polchinski, J. (2005). Superstring theory (Vols. I and II). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  35. 35.
    Raymond, P. (1971). Dual theory for free fermions. Physics Review D, 3, 2415–2418.ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Scherk, J., & Schwarz, J. H. (1974). Dual models for non-hadrons. Nuclear Physics B, 81, 118–144.ADSCrossRefGoogle Scholar
  37. 37.
    Schwarz, J. H. (1997). Lectures on superstrings and M-theory. Nuclear Physics B - Proceedings Supplements, 55, 1–32, hep–th/9607201.Google Scholar
  38. 38.
    Strominger, A., & Fava, G. (1996). Microscopic origin of the ‘Bekenstein-Hawking Entropy’. Physics Letters B, 379, 99–104.ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Susskind, L. (1970). Dual symmetric theory of hadrons. I. Nuovo Cimento A, 69, 457–496.ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36, 6377–6396.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    ’t Hooft, G. (1987). Can spacetime be probed below string size? Physics Letters B, 198, 61–63.Google Scholar
  42. 42.
    ’t Hooft, G. (1995). Black holes and the dimensional reduction of spacetime. In U. Lindström (Ed.), The Oskar Klein Centenary, 19–21 Sept. Stockholm, Sweden(1994). Worldscientific. See also: “Dimensional Reduction in Quantum gravity”, Utrecht preprint THU-93/26 (gr-qg/9310026).Google Scholar
  43. 43.
    Thorn, C. B. (1991). Reformulating string theory with the 1∕N expansion. In International A. D. Sakharov Conference on Physics, Moscow, pp. 447–454. (hep-th/9405069).Google Scholar
  44. 44.
    Townsend, P. K. (1995). The eleven-dimensional supermembrane revisited. Physics Letters B, 350, 184–187. hep–th/9501068.Google Scholar
  45. 45.
    Veneziano, G. (1968). Construction of a crossing-symmetric Regge-behaved amplitude for linearly rising trajectories. Nuovo Cimento A, 57, 190–197.ADSCrossRefGoogle Scholar
  46. 46.
    Witten, E. (1995). String theory dynamics in various dimensions. Nuclear Physics B, 443, 85–126. hep–th/9503124.Google Scholar
  47. 47.
    Witten, E. (1998). Anti-de-Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2, 253–291. (hep-th/9802150).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yoneya, T. (1974). Connection of dual models to electrodynamics and gravidynamics. Progress in Theoretical Physics, 51, 1907–1920.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edouard B. Manoukian
    • 1
  1. 1.The Institute for Fundamental StudyNaresuan UniversityPhitsanulokThailand

Personalised recommendations