Advertisement

Introduction to Supersymmetry

  • Edouard B. Manoukian
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

It is often stated that “Supersymmetry” is a theory with mathematical beauty.1 Well, it is.2 Imposing, a priori, a symmetry in developing quantum field theory interactions is quite important in the sense that, together with the criterion of renormalizability, it narrows down the type of interactions one was, a priori, set up to develop. New physics may also arise from the requirement of the invariance of a theory under some given symmetry. The discovery of the positron in Dirac’s work by insisting the invariance of a quantum theory of the electron under Lorentz transformations, as dictated by special relativity, is the classic example of one such a physical consequence.3

Recommended Reading

  1. Baer, H., & Tata, X. (2006). Weak scale supersymmetry: From superfields to scattering events. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  2. Binetruy, P. (2006). Supersymmetry, experiment, and cosmology. Oxford: Oxford University Press.zbMATHGoogle Scholar
  3. Dine, M. (2007). Supersymmetry and string theory: Beyond the standard model. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  4. Manoukian, E. B. (2012). The explicit pure vector superfield in gauge theories. Journal of Modern Physics, 3, 682–685.ADSCrossRefGoogle Scholar
  5. Manoukian, E. B. (2016). Quantum field theory I: Foundations and abelian and non-abelian gauge theories. Dordrecht: Springer.zbMATHGoogle Scholar
  6. Weinberg, S. (2000). The quantum theory of fields. III: Supersymmetry. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar

References

  1. 1.
    Aad, G., et al. (2012). Observation of a new particle in the search for the standard model Higgs Boson with the ATLAS detector at the LHC. Physics Letters B, 716, 1–29.ADSCrossRefGoogle Scholar
  2. 2.
    Bailin, D., & Love, A. (1994). Supersymmetric gauge field theory and string theory. Bristol: Institute of Physics Publishing.CrossRefzbMATHGoogle Scholar
  3. 3.
    Bare, H., & Tata, X. (2006). Weak scale supersymmetry: From superfields to scattering events. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  4. 4.
    Berezin, F. A. (1987). Introduction to superanalysis. Dordrecht: Reidel.CrossRefzbMATHGoogle Scholar
  5. 5.
    Beringer, J., et al. (2012). Particle data group. Physical Review D, 86, 010001.ADSCrossRefGoogle Scholar
  6. 6.
    Chatrchyan, S., et al. (2012). Observation of a new boson at mass 125 GeV with the CMS experiment at LHC. Physics Letters B, 716, 30–61.ADSCrossRefGoogle Scholar
  7. 7.
    Coleman, S., & Mandula, J. (1967). All possible symmetries of the S matrix. Physical Review, 150, 1251–1256.ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Deser, S. (2000). Infinities in quantum gravities. Annalen der Physik, 9, 299–306.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Deser, S., Kay, J. H., & Stelle, K. S. (1977). Renormalizability properties of supergravity. Physical Reviews Letters, 38, 527–530.ADSCrossRefGoogle Scholar
  10. 10.
    Deser, S., & Zumino, B. (1976). Consistent supergravity. Physics Letters B, 62, 335–337.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dimopoulos, S., & Georgi, H. (1981). Softly broken supersymmetry and SU(5). Nuclear Physics B, 193, 150–162.ADSCrossRefGoogle Scholar
  12. 12.
    Dirac, P. A. M. (1970). Can equations of motion be used in high-energy physics? Physics Today, 23(4), 29.CrossRefGoogle Scholar
  13. 13.
    Einhorn, M. B., & Jones, D. R. T. (1982). The weak mixing angle and unification mass in supersymmetric SU(5). Nuclear Physics B, 196, 475–488.ADSCrossRefGoogle Scholar
  14. 14.
    Farrar, G. R., & Fayet, P. (1978). Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Physics Letters B, 76, 575–579ADSCrossRefGoogle Scholar
  15. 15.
    Fayet, P. (1977). Spontaneously broken supersymmetric theories of weak, electromagnetic, and strong interactions. Physics Letters B, 69, 489–494.ADSCrossRefGoogle Scholar
  16. 16.
    Ferrara, S. (Ed.). (1987). Supersymmetry (Vols. 1 & 2). New York: Elsevier Publishers, B. V.Google Scholar
  17. 17.
    Freedman, D. Z., van Nieuwenhuizen, P., & Ferrara, S. (1976). Progress toward a theory of supergravity. Physical Review B, 13, 3214–3218.ADSMathSciNetGoogle Scholar
  18. 18.
    Girardello, L., & Grisaru, M. T. (1982). Soft breaking of supersymmetry. Nuclear Physics B, 194, 65–76.ADSCrossRefGoogle Scholar
  19. 19.
    Gol’fand, A., & Likhtman, E. P. (1971). Extension of the Poincaré group generators and violation of P invariance. JETP Letters, 13, 323–326. (Reprinted In Ferrara, S. (Ed.), Supersymmetry (Vols. 1 & 2). New York: Elsevier Publishers, B. V, 1987).Google Scholar
  20. 20.
    Grisaru, M. T., Siegel, N., & Roc̆ek, M. (1979). Improved methods for supergraphs. Nuclear Physics B, 159, 429–450.Google Scholar
  21. 21.
    Howe, P. S., & Stelle, K. S. (2003). Supersymmetry counterterms revisited. Physics Letters B, 554, 190–196. hep–th/0211279v1.Google Scholar
  22. 22.
    Jones, D. R. T. (1974). Two-loop diagrams in Yang-Mills theory. Nuclear Physics B, 75, 531–538.ADSCrossRefGoogle Scholar
  23. 23.
    Jones, D. R. T. (1975). Asymptotic behaviour of supersymmetric Yang-Mills theories in the two-loop approximation. Nuclear Physics B, 87, 127–132.ADSCrossRefGoogle Scholar
  24. 24.
    Manoukian, E. B. (2006). Quantum theory: A wide spectrum. AA Dordrecht: Springer.zbMATHGoogle Scholar
  25. 25.
    Manoukian, E. B. (2012). The explicit pure vector superfield in gauge theories. Journal of Modern Physics, 3, 682–685.ADSCrossRefGoogle Scholar
  26. 26.
    Manoukian, E. B. (2016). Quantum field theory I: Foundations and abelian and non-abelian gauge theories. Dordrecht: Springer.zbMATHGoogle Scholar
  27. 27.
    Miura, M. (2010). Search for nucleon decays in super-Kamiokande. ICHEP, Paris, Session, 10.Google Scholar
  28. 28.
    O’Raifeartaigh, L. (1975). Spontaneous symmetry breaking for chiral scalar superfields. Nuclear Physics B, 96, 331–352.ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Peskin, M. (1997). Beyond the standard model. In N. Ellis & M. Neubert (Eds.), 1996 European school of high-energy physics. Genève: CERN-97-03.Google Scholar
  30. 30.
    Salam, A., & Strathdee, J. (1974). Supersymmetry and non-abelian gauges. Physics Letters B, 51, 353–355. (Reprinted In Ferrara, S. (Ed.), Supersymmetry (Vols.1 & 2). New York: Elsevier Publishers, B. V, 1987)Google Scholar
  31. 31.
    Salam, A., & Strathdee, J. (1974). Supergauge transformations. Nuclear Physics B, 76, 477–482.ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Salam, A., & Strathdee, S. (1975). Feynman rules for superfields. Nuclear Physics B, 86, 42–152.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Salam, A., & Strathdee, J. (1975). Superfields and Fermi-Bose symmetry. Physical Review D, 8(11), 1521–1535.ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Seiberg, N. (1993). Naturalness versus supersymmetric non-renormalization theorems. Physics Letters B, 318, 469–475.ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Seiberg, N., & Witten, E. (1994). Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nuclear Physics B, 426, 19–52. [Erratum: Nuclear Physics B, 430, pp. 485–486, 1994]; hep-th/9407087.Google Scholar
  36. 36.
    Stelle, K. S. (2001). Revisiting supergravity and super Yang-Mills renormalization. In J. Lukierski & J. Rembielinski (Eds.), Proceedings of 37th Karpacz Winter School of Theoretical Physics, Feb 2001. hep-th/0203015v1.Google Scholar
  37. 37.
    Stelle, K. S. (2012). String theory, unification and quantum gravity. In 6th Aegean Summer School, “Quantum Gravity and Quantum Cosmology”, 12–17 Sept, 2011, Chora, Naxos Island. hep-th/1203.4689v1.Google Scholar
  38. 38.
    Terning, J. (2006). Modern supersymmetry: Dynamics and duality. Oxford: Clarendon Press.zbMATHGoogle Scholar
  39. 39.
    Veltman, M. J. G. (1981). The infrared-ultraviolet connection. Acta Physica Polonica B, 12, 437.Google Scholar
  40. 40.
    Volkov, D. V., & Akulov, V. P. (1973). Is the neutrino a goldstone particle. Physics Letters B, 46, 109–110. Reprinted In Ferrara, S. (Ed.), Supersymmetry (Vols. 1 & 2). New York: Elsevier Publishers, B. V, 1987).Google Scholar
  41. 41.
    Weinberg, S. (2000). The quantum theory of fields, III: Supersymmetry. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  42. 42.
    Wess, J., & Zumino, B. (1974). Supergauge transformations in four dimensions. Nuclear Physics, B70, 39–50. Reprinted In Ferrara, S. (Ed.), Supersymmetry (Vols. 1 & 2). New York: Elsevier Publishers, B. V, 1987).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edouard B. Manoukian
    • 1
  1. 1.The Institute for Fundamental StudyNaresuan UniversityPhitsanulokThailand

Personalised recommendations