Skip to main content

Raw Materials

  • Chapter
  • First Online:
A History of the Solar System
  • 1232 Accesses

Abstract

A presolar (molecular) cloud supplied dust and gas to the solar nebula ancestral to our solar system. The dust originated in different varieties of star including low mass stars at the end of their evolution and exploding supernovae. They include silicates and graphite. The gas is predominantly molecular hydrogen (H2). Calcium-aluminium-rich inclusions (CAIs) and chondrules are found in meteorites which yield some of the oldest ages for the solar system. Polycyclic aromatic hydrocarbons (PAHs) are widespread; at low temperatures they may be transformed into more complex organic molecules by UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allamandola LJ, Tielens AGGM, Barker JR (1985) Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: auto exhaust along the Milky Way. Astrophys J 290: L25-L28

    Google Scholar 

  2. Altwegg K et al (2015) 67/P Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, doi:10.1126/science.1261952

    Google Scholar 

  3. ATSDR (2015) Agency for Toxic Substances and Disease Registry at http://www.atsdr.cdc.gov/csem/

  4. Bernatowicz TJ, Zinner E eds (1997) Astrophysical implications of the laboratory study of presolar materials. AIP, New York

    Google Scholar 

  5. Bernatowicz TJ et al (2005) Constraints on grain formation around carbon stars from laboratory studies of presolar graphite. Astrophys J 631:988-1000

    Google Scholar 

  6. Boice DC (1997) Kuiper Belt. In: Shirley JH, Fairbridge RW (eds) Encyclopedia of planetary sciences. Kluwer, Dordrecht, 381

    Google Scholar 

  7. Boice DC, Fairbridge RW (1997) Oort, Jan Hendrik (1900-1992), and Oort cloud. In: Shirley JH, Fairbridge RW (eds) Encyclopedia of planetary sciences. Kluwer, Dordrecht, 559

    Google Scholar 

  8. Bradley J (2010) The astromineralogy of interplanetary dust particles. Lecture Notes in Physics 815:259-276

    Google Scholar 

  9. Capaccioni F et al (2015)The organic-rich surface of comet 67/P Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, doi:10.1126/science.aaa0628

    Google Scholar 

  10. Cleeves LI et al (2014) The ancient heritage of water ice in the solar system. Science 345:1590-1593

    Google Scholar 

  11. Connelly JN et al (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651-655

    Google Scholar 

  12. dePater I, Lissauer JJ (2001) Planetary sciences. Cambridge Univ Press, Cambridge

    Google Scholar 

  13. Desch SJ, Morris MA, Connolly HC Jr and Boss AP (2012) The importance of experiments: constraints on chondrule formation models. Meteor Planet Sci 47:1139-1156

    Google Scholar 

  14. French B, MacPherson G, Clarke R (1990) Antarctic meteorite teaching collection. At http://curator.jsc.nasa.gov/

  15. Gudipati MS and Yang R (2012) In-situ probing of radiation-induced processing of organics in astrophysical ice analogs – novel laser desorption laser ionization time-of-flight mass spectroscopic studies. Astrophys J Lett 756: doi:10.1088/2041-8205/75/1/L24

  16. Hartogh P et al (2011) Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478:218–220

    Google Scholar 

  17. Hersant F (2004) Enrichment in volatiles in the giant planets of the Solar System. Planetary and Space Science 52: 623–641.

    Google Scholar 

  18. Jacquet E, Robert F (2013) Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus 223:722-732

    Google Scholar 

  19. Joseph R, Schild R (2010) Biological cosmology and the origins of life in the Universe. J Cosmology 5:1040-1090

    Google Scholar 

  20. King AJ, Schofield PF, Howard KT, Russell SS (2015) Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim Cosmochim Acta 165:148-160

    Google Scholar 

  21. Li A and Greenberg JM (2002) In dust we trust. In: Pirronello V and Krelowski J (eds) Solid State Astrochemistry. Kluwer, Dordrecht, 1-44

    Google Scholar 

  22. Lodders K (2003) Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591:1220-1247

    Google Scholar 

  23. Longair M S (1966) Our evolving universe. Cambridge University Press, Cambridge

    Google Scholar 

  24. Lugmair GW, Shukolyukov A (2001) Early solar system events and timescales. Meteor planet sci 36:1017-1026

    Google Scholar 

  25. McKay DS et al (2010) Search for past life on Mars: possible relic biogenic activity in Martian Meteorite ALH84001.Science 273:924-930

    Google Scholar 

  26. McKee CF and Ostriker EC (2007) Theory of star formation. Annu Rev Astron Astrophys 45:565-687

    Google Scholar 

  27. MacPherson GJ (2003) Calcium-aluminium-rich inclusion in chondritic meteorites. In Davis AM (ed) Treatise on Geochemistry, Elsevier, 201-246

    Google Scholar 

  28. Morbidelli A et al (2000) Source regions and timnescales for the delivery of water to the Earth. Meteor Planet Sci 35:1309-1320

    Google Scholar 

  29. Mousis O, Chassefière E, Holm N G, Charlou J -L, Rousselot P (2015) Methane clathrates in the solar system. Astrobiology 15:308-326

    Google Scholar 

  30. Ogliore RC et al (2015) Oxygen isotope composition of coarse- and fine-grained material from Comet 81P/Wild 2. Geochim Cosmochim Acta 166:74-91

    Google Scholar 

  31. Sandford SA et al (2014) Photosynthesis and photo-stability of nucleic acids in prebiotic extra-terrestrial environments. Top Curr Chem, doi:10.1007/128_2013_49

  32. Scott ERD 2007 Chondrites and the protoplanetary disk. Annu Rev Earth Planet Sci 35:577-620

    Google Scholar 

  33. Steigman G, Romano D, Tosi M (2007) Connecting the primordial and galactic deuterium abundances. Mon Not Roy Astr Soc 378:576-580

    Google Scholar 

  34. Visser R et al (2007) PAH chemistry and IR emission from circumstellar disks. Astron Astrophys 466:229-241

    Google Scholar 

  35. Williams JP et al (2000) The structure and evolution of molecular clouds: from clumps to cores to the IMF. In: Mannings V et al (eds) Protostars and Planets IV. Univ. of Arizona Press, Tucson, 97-120

    Google Scholar 

  36. Yang L, Ciesla FJ, Alexander CMO (2013) The D/H ratio of water in the solar nebula during its formation and evolution. Icarus 226:256-267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vita-Finzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vita-Finzi, C. (2016). Raw Materials. In: A History of the Solar System. Springer, Cham. https://doi.org/10.1007/978-3-319-33850-7_2

Download citation

Publish with us

Policies and ethics