Skip to main content

A GPU Accelerated Finite Differences Method of the Bioheat Transfer Equation for Ultrasound Thermal Ablation

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 653))

Abstract

Over the years, high intensity focused ultrasound (FUS) therapy has become a promising therapeutic alternative for non-invasive tumor treatment. The basic idea of FUS therapy is the elevation of the tissue temperature by the application of focused ultrasound beams to focal spot in the tumor. Biothermal modeling is utilized to predict dynamic temperature distributions generated and altered by the therapeutic heating modality, tissue energy storage and dissipation, and blood flow. Implementation of biothermal modeling in the planning, monitoring, control and evaluation of MR guided Focused Ultrasound (MRgFUS) therapies can help to minimize treatment time, maximize efficacy, and ensure the safety of healthy normal tissues, while increasing clinical confidence in MRgFUS treatments. Fast calculations of thermal doses can support in planning, conduction, and monitoring of such treatments. In the current study a GPU-based method in Matlab is proposed, for fast calculations of the temperature and cumulative equivalent minutes at 43° (CEM 43°) based on the bioheat equation. The performance of our proposed method was assessed with three GPUs (GTX 750, GTX 770 and Tesla C2050) for five grid sizes. The maximum speedup was achieved with the Tesla C2050 (~29) while GTX 750 demonstrated the lower performance (~15).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dewhirst, M.W., Vujaskovic, Z., Jones, E., Thrall, D.: Re-setting the biologic rationale for thermal therapy. Int. J. Hyperth. 21, 779–790 (2005)

    Article  Google Scholar 

  2. Horsman, M.R., Overgaard, J.: Hyperthermia: a potent enhancer of radiotherapy. Clin. Oncol. (R Coll Radiol) 19, 418–426 (2007)

    Article  Google Scholar 

  3. Rempp, H., Hoffmann, R., Roland, J., Buck, A., Kickhefel, A., Claussen, C.D., Pereira, P.L., Schick, F., Clasen, S.: Threshold-based prediction of the coagulation zone in sequential temperature mapping in MR-guided radiofrequency ablation of liver tumours. Eur. Radiol. 22, 1091–1100 (2012)

    Article  Google Scholar 

  4. Malcolm, A.L., ter Haar, G.R.: Ablation of tissue volumes using high intensity focused ultrasound. Ultrasound Med. Biol. 22, 659–669 (1996)

    Article  Google Scholar 

  5. Overgaard, J.: Effect of hyperthermia on malignant cells in vivo. A review and a hypothesis. Cancer 39, 2637–2646 (1977)

    Article  Google Scholar 

  6. Vykhodtseva, N., McDannold, N., Martin, H., Bronson, R.T., Hynynen, K.: Apoptosis in ultrasound-produced threshold lesions in the rabbit brain. Ultrasound Med. Biol. 27, 111–117 (2001)

    Article  Google Scholar 

  7. Fry, F.J., Johnson, L.K.: Tumor irradiation with intense ultrasound. Ultrasound Med. Biol. 4, 337–341 (1978)

    Article  Google Scholar 

  8. Robinson, T.C., Lele, P.P.: An analysis of lesion development in the brain and in plastics by high-intensity focused ultrasound at low-megahertz frequencies. J. Acoust. Soc. Am. 51, 1333–1351 (1972)

    Article  Google Scholar 

  9. Hynynen, K., Pomeroy, O., Smith, D.N., Huber, P.E., McDannold, N.J., Kettenbach, J., Baum, J., Singer, S., Jolesz, F.A.: MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219, 176–185 (2001)

    Article  Google Scholar 

  10. Sanghvi, N.T., Foster, R.S., Bihrle, R., Casey, R., Uchida, T., Phillips, M.H., Syrus, J., Zaitsev, A.V., Marich, K.W., Fry, F.J.: Noninvasive surgery of prostate tissue by high intensity focused ultrasound: an updated report. Eur. J. Ultrasound 9, 19–29 (1999)

    Article  Google Scholar 

  11. Gelet, A., Chapelon, J.Y., Bouvier, R., Rouviere, O., Lasne, Y., Lyonnet, D., Dubernard, J.M.: Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J. Endourol. 14, 519–528 (2000)

    Article  Google Scholar 

  12. Raaymakers, B.W., Kotte, A.N.T.J., Lagendijk, J.J.: “Discrete vasculature (DIVA) model simulating the thermal impact of individual blood vessels for in vivo heat transfer”. In: Minkowycz, W.J. (ed.) Advances in Numerical Heat Transfer, vol. 3, pp. 121–148. CRC Press, Boca Raton, USA (2009)

    Google Scholar 

  13. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Google Scholar 

  14. Minkowycz, W.J., Sparrow, E.M., Abraham, J.P.: Advances in Numerical Heat Transfer, vol. 3. CRC Press, Boca Raton, USA (2009)

    Book  MATH  Google Scholar 

  15. Dillenseger, J.L., Esneault, S.: Fast FFT-based bioheat transfer equation computation. Comput. Biol. Med. 40, 119–123 (2010)

    Article  Google Scholar 

  16. Georgii, J., von Dresky, C., Meier, S., Demedts, D., Schumann, C.: Focused ultrasound-efficient GPU simulation methods for therapy planning. In: 8th Workshop on Virtual Reality Interactions and Physical Simulations, pp. 119–128 (2011)

    Google Scholar 

  17. Canney, M.S., Bailey, M.R., Crum, L.A., Khokhlova, V.A., Sapozhnikov, O.A.: Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach. J. Acoust. Soc. Am. 124, 2406–2420 (2008)

    Article  Google Scholar 

  18. Curra, F.P., Mourad, P.D., Khokhlova, V.A., Cleveland, R.O., Crum, L.A.: Numerical simulations of heating patterns and tissue temperature response due to high-intensity focused ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1077–1089 (2000)

    Article  Google Scholar 

  19. Gutierrez, G.: Study of the bioheat equation with a spherical heat source for local magnetic hyperthermia. Mec. Comput. 3562–3572 (2007)

    Google Scholar 

  20. Sapareto, S.A., Dewey, W.C.: Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984)

    Article  Google Scholar 

  21. Liu, X., Cheng, L., Zhou, Q.: Research and comparison of CUDA GPU programming in Matlab and Mathematica. In: Proceedings of 2013 Chinese Intelligent Automation Conference, pp. 251–257 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Kalantzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalantzis, G., Miller, W., Tichy, W., LeBlang, S. (2016). A GPU Accelerated Finite Differences Method of the Bioheat Transfer Equation for Ultrasound Thermal Ablation. In: Lee, R. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, vol 653. Springer, Cham. https://doi.org/10.1007/978-3-319-33810-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33810-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33809-5

  • Online ISBN: 978-3-319-33810-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics