Skip to main content

Optimized Multi Threshold Brain Tumor Image Segmentation Using Two Dimensional Minimum Cross Entropy Based on Co-occurrence Matrix

  • Chapter
  • First Online:
Medical Imaging in Clinical Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 651))

Abstract

The present chapter proposes an automatic segmentation method that performs multilevel image thresholding by using the spatial information encoded in the gray level co-occurrence matrix (GLCM). The 2D local cross entropy approach that has been designed by extending the one dimensional (1-D) cross entropy thresholding method to a two dimensional (2D) one using the GLCM, serves as a fitness function. The use of conventional exhaustive search based implementations for multilevel thresholding are computationally expensive. Under such conditions evolutionary algorithm like particle swarm optimization (PSO) has been used. The effectiveness of this method was tested on brain tumor MR images and comparison was done with seven other level set based segmentation algorithms, using three different measures (1) Jaccard, (2) Dice and (3) Root mean square error (RMSE). The results demonstrate that average metric values were equal to 0.881902, 0.936394 and 0.070123 for proposed approach, which were significantly better than existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gondal, A.H., Khan, M.N.A.: A review of fully automated techniques for brain tumor detection from MR images. Int. J. Mod. Educ. Comput. Sci. 5, 55–61 (2013)

    Article  Google Scholar 

  2. Hassanien, A.E.: Classification and feature selection of breast cancer data based on decision tree algorithm. Int. J. Stud. Inform. Control J SI 12(1), 33–39 (2003)

    Google Scholar 

  3. http://www.oncolink.org/resources/images/md2b/Image11.gif/. Accessed 12 May 2015

  4. Krishn, A., Bhateja, V., Patel, H., Sahu, A.: Medical image fusion in wavelet and ridgelet domains: a comparative evaluation. Int. J. Rough Sets Data Anal. 2, 78–91 (2015)

    Article  Google Scholar 

  5. Bhateja, V., Patel, H., Krishn, A., Sahu, A., Lay-Ekuakille, A.: Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens. J. 15, 6783–6790 (2015)

    Article  Google Scholar 

  6. Georgiadis, P., Cavouras, D., Kalatzis, I., Daskalakis, A., Kagadis, G.C., Sifaki, K., Malamas, M., Nikiforidis, G., Solomou, E.: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Comput. Methods Programs Biomed. 89, 24–32 (2008)

    Article  Google Scholar 

  7. Georgiadis, P., Cavouras, D., Kalatzis, I., Daskalakis, A.: Non-linear least squares features transformation for improving the performance of probabilistic neural networks in classifying human brain tumors on MRI. In: Computational Science and Its Applications—ICCSA 2007, pp. 239–247. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  8. Zacharaki, E.I., Wang, S., Chawla, S., Soo, D.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62, 1609–1618 (2009)

    Article  Google Scholar 

  9. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Med. Imaging 27, 629–640 (2008)

    Article  Google Scholar 

  10. Hemanth, D.J., Vijila, C.K.S., Selvakumar, A.I., Anitha, J.: Distance metric-based time efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation. Neural Comput. Appl. 22, 1013–1022 (2013)

    Article  Google Scholar 

  11. Dou, W., Ruan, S., Chen, Y., Bloyet, D., Constans, J.: A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vis. Comput. 25, 164–171 (2007)

    Article  Google Scholar 

  12. Shrivastava, A., Raj, A., Bhateja, V.: Combination of wavelet transform and morphological filtering for enhancement of magnetic resonance images. In: International Conference on Digital Information Processing and Communications, pp. 460–474. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  13. Bhateja, V., Tiwari, H., Srivastava, A.: A non-local means filtering algorithm for restoration of Rician distributed MRI. In: Emerging ICT for Bridging the Future -Proceedings of the 49th Annual Convention of the Computer Society of India CSI, vol. 2. pp. 1–8. Springer International Publishing (2014)

    Google Scholar 

  14. Alankrita Raj, A., Srivastava, A., Bhateja, V.: Computer aided detection of brain tumorin magnetic resonance images. Int. J. Eng. Technol. 3, 523–532 (2011)

    Google Scholar 

  15. Dey, N., Roy, A.B., Pal, M., Das, A., Bengal, W., Bengal, W., Bengal, W., Bengal, W.: FCM based blood vessel segmentation method for retinal images. Int. J. Comput. Sci. Networks 1, 1–5 (2012)

    Google Scholar 

  16. Hassanien A.E., Moftah, H.M., Azar, A.T., Shoman, M.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perception neural networks classifier. Appl. Soft Comput. 14, 62–71 (2014)

    Google Scholar 

  17. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  18. Shi, Y., Karl, W.C., Member, S.: A real-time algorithm for the approximation of level-set based curve evolution. IEEE Trans. Image Process. 17, 645–656 (2008)

    Article  MathSciNet  Google Scholar 

  19. Samanta, S., Dey, N., Das, P., Acharjee, S.: multilevel threshold based gray scale image segmentation using cuckoo search. In: International Conference on Emerging Trends in Electrical, Communication and Information Technologies, pp. 27–34. Anatapur, India (2012)

    Google Scholar 

  20. Joe, B.N., Fukui, M.B., Meltzer, C.C., Huang, Q., Day, R.S., Greer, P.J., Bozik, M.E.: Brain tumor volume measurement: comparison of manual and semi automated methods. Radiology 212, 811–816 (1999)

    Article  Google Scholar 

  21. Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif. Intell. Med. 21, 43–63 (2001)

    Article  Google Scholar 

  22. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  23. Liu, J., Udupa, J.K., Odhner, D., Hackney, D., Moonis, G.: A System for brain tumor volume estimation via mr imaging and fuzzy connectedness. Comput. Med. Imaging Graph. 29, 21–34 (2005)

    Article  Google Scholar 

  24. Vijayakumar, C., Damayanti, G., Pant, R., Sreedhar, C.M.: Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput. Med. Imaging Graph. 31, 473–484 (2007)

    Article  Google Scholar 

  25. The Insight Toolkit. http://www.itk.org

  26. Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17, 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  27. Lankton, S., Member, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17, 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  28. Wang, T., Cheng, I., Basu, A.: Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 56, 781–789 (2009)

    Article  Google Scholar 

  29. Bernard, O., Friboulet, D., Thevenaz, P., Unser, M.: Variational B-spline level-set: a linear filtering approach for fast deformable model evolution. IEEE Trans. Image Process. 18, 1179–1191 (2009)

    Article  MathSciNet  Google Scholar 

  30. Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160, 1457–1473 (2009)

    Article  MathSciNet  Google Scholar 

  31. Iftekharuddin, K.M., Zheng, J., Islam, M.A., Ogg, R.J.: Fractal-based brain tumor detection in multimodal MRI. Appl. Math. Comput. 207, 23–41 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Ahmed, S., Iftekharuddin, K.M., Vossough, A.: Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI. IEEE Trans. Inf Technol. Biomed. 15, 206–213 (2011)

    Article  Google Scholar 

  33. Dang, M., Modi, J., Roberts, M., Chan, C., Mitchell, J.R.: Validation study of a fast, accurate, and precise brain tumor volume measurement. Comput. Methods Programs Biomed. 111, 480–487 (2013)

    Article  Google Scholar 

  34. Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60, 3204–3215 (2013)

    Article  Google Scholar 

  35. Arakeri, M.P., Reddy, G.R.M.: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images. Signal, Image Video Process. 7, 1–17 (2013)

    Article  Google Scholar 

  36. Thapaliya, K., Pyun, J., Park, C., Kwon, G.: Level set method with automatic selective local statistics for brain tumor segmentation in mr images. Comput. Med. Imaging Graph. 37, 522–537 (2013)

    Article  Google Scholar 

  37. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision, Graph. Image Process 29, 273–285 (1985)

    Article  Google Scholar 

  38. Horng, M.H.: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Syst. Appl. 37, 4580–4592 (2010)

    Article  Google Scholar 

  39. Dey, N., Sayan, C., Samanta, S.: Optimization of Watermarking in Biomedical Signal. LAP Lambert Academic Publishing (2014)

    Google Scholar 

  40. Yin, S., Zhao, X., Wang, W., Gong, M.: Efficient multilevel image segmentation through fuzzy entropy maximization and graph cut optimization. Pattern Recognit. 47, 2894–2907 (2014)

    Article  Google Scholar 

  41. Bhandari, A.K., Kumar, A., Singh, G.K.: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, Otsu and Tsallis functions. Expert Syst. Appl. 42, 1573–1601 (2015)

    Article  Google Scholar 

  42. Tang, K., Yuan, X., Sun, T., Yang, J., Gao, S.: An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowledge-Based Syst. 24, 1131–1138 (2011)

    Article  Google Scholar 

  43. Yin, P.-Y.: Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 184, 503–513 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Horng, M.-H., Liou, R.-J.: Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst. Appl. 38, 14805–14811 (2011)

    Article  Google Scholar 

  45. Sarkar, S., Das, S., Sinha, S.: A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognit. Lett. 54, 27–35 (2015)

    Article  Google Scholar 

  46. Mokji, M.M., Abu Bakar, S.A.R.: Adaptive thresholding based on co-occurrence matrix edge information. J. Comput. 2, 44–52 (2007)

    Google Scholar 

  47. Corneloup, G., Moysan, J., Magnin, I.E.: BSCAN Image Segmentation by Thresholding using Cooccurrence Matrix Analysis. Pattern Recognit. 29, 281–296 (1996)

    Article  Google Scholar 

  48. El-Feghi, I., Adem, N., Sid-Ahmed, M.A., Ahmadi, M.: Improved co-occurrence matrix as a feature space for relative entropy-based image thresholding. In: Fourth International Conference on Computer graphics, Imaging and Visualization, pp. 314–320. IEEE, Bangkok (2007)

    Google Scholar 

  49. Li, Y.L.Y., Cheriet, M.C.M., Suen, C.Y.: A threshold selection method based on multiscale and graylevel co-occurrence matrix analysis. In: Eighth International Conference on Document Analysis and Recognition (ICDAR’05), pp. 575–578. IEEE (2005)

    Google Scholar 

  50. Nie, F., Gao, C., Guo, Y., Gan, M.: Two-dimensional minimum local cross-entropy thresholding based on co-occurrence matrix. Comput. Electr. Eng. 37, 757–767 (2011)

    Article  Google Scholar 

  51. Kullback, S.: Information Theory and Statistics. Dover, New York (1968)

    MATH  Google Scholar 

  52. Li, C.H., Lee, C.K.: Minimum cross entropy thresholding. Pattern Recognit. 26, 617–625 (1993)

    Article  Google Scholar 

  53. Sarkar, S., Das, S.: Multilevel image thresholding based on 2d histogram and maximum tsallis entropy—a differential evolution approach. IEEE Trans. Image Process. 22, 4788–4797 (2013)

    Article  MathSciNet  Google Scholar 

  54. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN’95), pp. 1942–1948. IEEE, Perth, WA (1995)

    Google Scholar 

  55. Shi, Y., Eberhart, R.C.: Emperical study of particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 101–106. IEEE, Washington, DC (1999)

    Google Scholar 

  56. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8, 240–255 (2004)

    Article  Google Scholar 

  57. Kharrat, A., Benamrane, N., Messaoud, M.B., Abid, M.: Detection of brain tumor in medical images. In: 2009 3rd International Conference on Signals, Circuits and Systems (SCS), pp. 1–6. IEEE, Medenine (2009)

    Google Scholar 

  58. http://imageshack.us/photo/my-images/196/img6oe.jpg/. Accessed 12 May 2015

  59. http://simplicitywebdesigns.com/images/marks_brain.gif/. Accessed 12 May 2015

  60. https://www.mc.vanderbilt.edu/documents/neurosurgery/images/headfilm.JPG/. Accessed 12 May 2015

  61. http://41.media.tumblr.com/cc88f088c55886d50f109f8e5b6ec484/tumblr_nm7vt1nC5s1tqnywjo1_1280.jpg/. Accessed 12 May 2015

  62. Dietenbeck, T., Alessandrini, M., Friboulet, D., Bernard, D.: CREASEG: a free software for the evaluation of image segmentation algorithms based on level set. In: 17th International Conference on Image Processing, pp. 665–668. IEEE, Hong Kong (2010)

    Google Scholar 

  63. Bauer, S., May, C., Dionysiou, D., Stamatakos, G., Buchler, P., Reyes, M.: Multiscale modeling for image analysis of brain tumor studies. IEEE Trans. Biomed. Eng. 59, 25–29 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the efforts by Dr. Sandeep Singh Pawar (Advance Diagnostic Centre, Ludhiana, Punjab) for providing the clinical interpretations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taranjit Kaur , Barjinder Singh Saini or Savita Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, T., Saini, B.S., Gupta, S. (2016). Optimized Multi Threshold Brain Tumor Image Segmentation Using Two Dimensional Minimum Cross Entropy Based on Co-occurrence Matrix. In: Dey, N., Bhateja, V., Hassanien, A. (eds) Medical Imaging in Clinical Applications. Studies in Computational Intelligence, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-319-33793-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33793-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33791-3

  • Online ISBN: 978-3-319-33793-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics