Skip to main content

Probabilistic Framework for Modelling the Evolution of Geomorphic Features in 10,000-Year Time Scale: The Eurajoki River Case

  • Conference paper
  • First Online:
Geospatial Data in a Changing World

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

  • 888 Accesses

Abstract

In this paper the long-term evolution of the catchment area of Eurajoki River, situated in Western Finland, is studied. The modelling area, nearly 1000 km2 in size, is at present mostly covered by sea. Probabilistic digital elevation model and land uplift model form the basis for the future catchment area modelling. A land uplift model is required due to the ongoing post-glacial rebound especially in the western parts of Finland. The maximum rate of land uplift in Finland is 1 cm per year while in the modelling area the land uplift rate is about 6 mm per year. The digital elevation model and land uplift model have been calculated using Monte Carlo simulation where the uncertainties in the source data have been taken into account. The probabilistic nature of these models enables also the river catchment area and river network analyses probabilistically. The analyses are done for the next 10,000 years in 1000-year intervals and 100 realizations are estimated for each time point. The results show that the catchment area expands towards the west as the land rises. An alternative river branch flowing northwards from the main course will form with a significant probability. Also, a delta area with multiple river branches is expected to form at about 7000 years after present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrén T, Björck S, Andrén E, Conley D, Zillén L, Anjar J (2011) The development of the Baltic Sea basin during the Last 130 ka. In: Harff J, Björck S, Hoth P (ed) The Baltic Sea basin. Springer, Berlin, pp 75–97. doi:10.1007/978-3-642-17220-5_4

    Google Scholar 

  • Avila R, Kautsky U, Ekström P-A, Åstrand P-G, Saetre P (2013) Model of the long-term transport and accumulation of radionuclides in future landscapes. Ambio 42:497–505. doi:10.1007/s13280-013-0402-x

    Article  Google Scholar 

  • Barnekow L (2000) Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, Northern Sweden. J Paleolimnol 23:399–420. doi:10.1023/A:1008171418429

    Article  Google Scholar 

  • Beckman O (2001) Anders celsius. Uppsala University. http://www.astro.uu.se/history/celsius.pdf. Accessed 17 Nov 2015

  • Berglund S, Kautsky U, Lindborg T, Selroos J-O (2009) Integration of hydrological and ecological modelling for the assessment of a nuclear waste repository. Hydrogeol J 17:95–113. doi:10.1007/s10040-008-0399-6

    Article  Google Scholar 

  • Björck S (2008) The late quarternary development of the Baltic Sea basin. In: Bolle H-J, Menenti M, Rasool I (ed) Assessment of climate change for the Baltic Sea basin. Springer, Berlin, pp 398–407. doi:10.1007/978-3-540-72786-6

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360

    Google Scholar 

  • Cato I, Stevens RL (2011) Gerard De Geer—a pioneer in quaternary geology in scandinavia. Baltica 5(1):1–22. doi:10.5200/baltica.2012.25.01

    Google Scholar 

  • Donato G, Belongie S (2002) Approximate thin plate spline mappings. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Proceedings of the 7th European conference on computer vision-part III. Springer, Berlin, pp 21–31

    Google Scholar 

  • Ekman N (1991) A concise history of postglacial land uplift research (from its beginning to 1950). Terra Nova 3(4):358–365. doi:10.1111/j.1365-3121.1991.tb00163.x

    Article  Google Scholar 

  • Eronen M, Glückert G, Hatakka L, Van De Plassche O, Van Der Plicht J, Rantala P (2001) Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic Sea in SW Finland based on studies of isolation contacts. Boreas 30:17–30. doi:10.1111/j.1502-3885.2001.tb00985.x

    Article  Google Scholar 

  • Geological Survey of Sweden (2016) Kartgenerator. http://apps.sgu.se/kartgenerator. Accessed 27 Jan 2016

  • Harlén H, Harlén E (2003) Sverige från A till Ö: geografisk-historisk upplagsbok. Kommentus, Stockholm

    Google Scholar 

  • Itkonen A, Marttila V, Meriläinen JJ, Salonen V-P (1999) 8000-year history of palaeoproductivity in a large boreal lake. J Paleolimnol 21:271–294

    Article  Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic system analysis. Photogram Eng Remote Sens 54(11):1593–1600

    Google Scholar 

  • Kuhry P, Turunen J (2006) The postglacial development of boreal and subarctic peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 25–46

    Chapter  Google Scholar 

  • Lidberg M, Johansson JM, Scherneck H-G, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geodyn 50(1):8–18. doi:10.1016/j.jog.2009.11.010

    Article  Google Scholar 

  • Meehl G, Stocker T (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge, pp 748–845

    Google Scholar 

  • Milanković M (1998) Canon of insolation and the ice-age problem. Textbook Publishing Company, Belgrade

    Google Scholar 

  • Müller J, Naeimi M, Gitlein O, Timmen L, Denker H (2012) A land uplift model in Fennoscandia combining GRACE and absolute gravimetry data. Phys Chem Earth 53:54–60. doi:10.1016/j.pce.2010.12.006

    Article  Google Scholar 

  • Mörner N-A (1979) The Fennoscandian uplift and late cenozoic geodynamics: geological evidence. GeoJournal 3(3):287–318. doi:10.1007/BF00177634

    Article  Google Scholar 

  • Nordlund C (2001) Det upphöjda landet: vetenskapen, landhöjningsfrågan och kartläggningen av Sveriges förflutna, 1860–1930. Dissertation, Umeå University

    Google Scholar 

  • Oksanen J (2006) Digital elevation model error in terrain analysis. Dissertation, University of Helsinki

    Google Scholar 

  • Pohjola J, Turunen J, Lipping T, Ikonen ATK (2009) Creation and error analysis of high resolution DEM based on source data sets of various accuracy. In: Lee J, Zlatanova S (eds) 3D geo-information sciences. Springer, Berlin, pp 341–353

    Chapter  Google Scholar 

  • Pohjola J, Turunen J, Lipping T, Ikonen ATK (2014) Landscape development modeling based on statistical framework. Comput Geosci 62:43–52. doi:10.1016/j.cageo.2013.09.013

    Article  Google Scholar 

  • Posiva (2013) Safety case for the disposal of spent nuclear fuel at olkiluoto—terrain and ecosystems development modelling in the biosphere assessment BSA-2012. Posiva Report 2012-29. Posiva Oy, Olkiluoto

    Google Scholar 

  • Posiva (2014) Safety case for the disposal of spent nuclear fuel at olkiluoto—data basis for the biosphere assessment BSA-2012. Posiva Report 2012-28. Posiva Oy, Olkiluoto

    Google Scholar 

  • Poutanen M, Nyberg S, Ahola J (2010) GPS measurements in Satakunta area. Posiva Working Report 2010-61. Posiva Oy, Olkiluoto

    Google Scholar 

  • Punning YM (1987) Holocene eustatic oscillations of the Baltic Sea level. J Coastal Res 3(4):505–513

    Google Scholar 

  • Påsse T (2001) An empirical model of glacio-isostatic movements and shore-level displacement in Fennoscandia. Report R-01-41. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Salminen T (2009) Kumo castle, Aborch and Vregdenborch—sources and past scholarship. In: Talvio T Suomen Museo 2008 (115. vuosikerta), Suomen Muinaismuistoyhdistys, Helsinki, pp 21–82

    Google Scholar 

  • Tiitinen T (2011) Liikettä ajassa ja paikassa—Lounais-Suomen muinaisrannat tarkastelussa. In: Uotila K (ed) Avauksia Ala-Satakunnan esihistoriaan. Eura Print Oy, Eura, pp 47–80

    Google Scholar 

  • Timmen L, Gitlein O, Müller J, Denker H, Mäkinen J, Bilker M, Wilmes H, Falk R, Reinhold A, Hoppe W, Pettersen BR, Omang OCD, Svendsen JGG, Øvstedal O, Scherneck H-G, Engen B, Engfeldt A, Strykowski G, Forsberg R (2004) Observing Fennoscandian geoid change for GRACE validation. In: Proceedings of the joint CHAMP/GRACE science meeting. GeoForschungsZentrum Potsdam, July 6–8, 2004

    Google Scholar 

  • Whitehouse P (2009) Glacial isostatic adjustment and sea-level change. Technical Report TR-09-11. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Ympäristö (2015) Eurajoki-Lapinjoki-ryhmä. http://www.ymparisto.fi/fi-FI/Satavesi/Toiminta/Vesistoalueryhmat/EurajokiLapinjokiryhma. Accessed 18 Nov 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Pohjola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pohjola, J., Turunen, J., Lipping, T., Ikonen, A.T.K. (2016). Probabilistic Framework for Modelling the Evolution of Geomorphic Features in 10,000-Year Time Scale: The Eurajoki River Case. In: Sarjakoski, T., Santos, M., Sarjakoski, L. (eds) Geospatial Data in a Changing World. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-33783-8_21

Download citation

Publish with us

Policies and ethics