Skip to main content

A Computational Model for Context and Spatial Concepts

  • Conference paper
  • First Online:
Geospatial Data in a Changing World

Abstract

A natural language interface can improve human-computer interaction with Geographic Information Systems (GIS). A prerequisite for this is the mapping of natural language expressions onto spatial queries. Previous mapping approaches, using, for example, fuzzy sets, failed because of the flexible and context-dependent use of spatial terms. Context changes the interpretation drastically. For example, the spatial relation “near” can be mapped onto distances ranging anywhere from kilometers to centimeters. We present a context-enriched semiotic triangle that allows us to distinguish between multiple interpretations. As formalization we introduce the notation of contextualized concepts that is tied to one context. One concept inherits multiple contextualized concepts such that multiple interpretations can be distinguished. The interpretation for one contextualized concept corresponds to the intention of the spatial term, and is used as input for a spatial query. To demonstrate our computational model, a next generation GIS is envisioned that maps the spatial relation “near” to spatial queries differently according to the influencing context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper we will use special formatting to indicate when a term is used to denote a concept.

  2. 2.

    In order to remove ambiguity we use special formatting to indicate a context, an exemplar of a concept, or a concept in a specific context (denoted concept @ context).

  3. 3.

    Algorithms are indicated with a small caps typeface.

  4. 4.

    The multiset is capable of holding the same entry multiple times, in contrast to a set.

References

  • Abdalla A, Weiser P, Frank AU (2013) Design principles for spatio-temporally enabled pim tools: A qualitative analysis of trip planning. In: Vandenbroucke D, Bucher B, Crompvoets J (eds) Geographic information science at the heart of Europe, Lecture notes in geoinformation and cartography. Springer , pp 323–336. doi:10.1007/978-3-319-00615-4_18

    Google Scholar 

  • Aerts D, Gabora L (2005) A theory of concepts and their combinations i. Kybernetes 34(1/2):167–191. doi:10.1108/03684920510575799

    Google Scholar 

  • Akman V, Surav M (1996) Steps toward formalizing context. AI Mag 17(3):55. doi:10.1609/aimag.v17i3.1231

  • Bazire M, Brézillon P (2005) Understanding context before using it. In: Dey A, Kokinov B, Leake D, Turner R (eds) Modeling and using context, Lecture notes in computer science, vol 3554. Springer, Berlin, pp 29–40. doi:10.1007/11508373_3

    Google Scholar 

  • Bouquet P, Ghidini C, Giunchiglia F, Blanzieri E (2003) Theories and uses of context in knowledge representation and reasoning. J Pragmatics 35(3):455–484. doi: 10.1016/S0378-2166(02)00145-5

    Google Scholar 

  • Burigo M, Coventry K (2010) Context affects scale selection for proximity terms. Spat Cogn Comput 10(4):292–312. doi:10.1080/13875861003797719

    Google Scholar 

  • Chandler D (2007) Semiotics: the basics. Routledge

    Google Scholar 

  • Duckham M, Worboys M (2001) Computational structure in three-valued nearness relations. In: Montello D (ed) Spatial information theory, Lecture notes in computer science, vol 2205. Springer, Berlin, pp 76–91. doi:10.1007/3-540-45424-1_6

    Google Scholar 

  • Egenhofer MJ, Mark DM (1995) Naive geography. In: Frank A, Kuhn W (eds) Spatial information theory a theoretical basis for GIS, Lecture notes in computer science, vol 988. Springer, Berlin, pp 1–15. doi:10.1007/3-540-60392-1_1

    Google Scholar 

  • Fauconnier G (1994) Mental spaces: aspects of meaning construction in natural language. Cambridge University Press

    Google Scholar 

  • Fisher PF (2000) Sorites paradox and vague geographies. Fuzzy Sets Syst 113(1):7–18. doi:10.1016/S0165-0114(99)00009-3

    Google Scholar 

  • Fisher PF, Orf TM (1991) An investigation of the meaning of near and close on a university campus. Comput Environ Urban Syst 15(1–2):23–35. doi:10.1016/0198-9715(91)90043-D

    Google Scholar 

  • Frank AU (1992) Qualitative spatial reasoning about distances and directions in geographic space. J Vis Lang Comput 3(4):343–371. doi:10.1016/1045-926X(92)90007-9

    Google Scholar 

  • Frank AU (2006) Distinctions produce a taxonomic lattice: are these the units of mentalese? In: Bennette B, Fellbaum C (ed) Formal ontology in information systems, vol 150. IOS Press, pp 27–38

    Google Scholar 

  • Freksa C, Barkowsky T (1996) On the relation between spatial concepts and geographic objects. Geographic objects with indeterminate boundaries, pp 109–121

    Google Scholar 

  • Gratzer G (2009) Lattice theory: first concepts and distributive lattices. Courier Corporation

    Google Scholar 

  • Hahn J, Frank AU (2014) Select the appropriate map depending on context in a hilbert space model (scop). In: Atmanspacher H, Haven E, Kitto K, Raine D (eds) Quantum interaction, Lecture notes in computer science, vol 8369. Springer, Heidelberg, pp 122–133. doi:10.1007/978-3-642-54943-4_11

    Google Scholar 

  • Huang H, Hahn J, Claramunt C, Reichenbacher T (eds) (2014) Proceedings of the 1st international workshop on context—awareness in geographic information services (CAGIS 2014 ). Eigenverlag, Wien. http://publik.tuwien.ac.at/files/PubDat_232845.pdf

  • Kuhn W (2005) Geospatial semantics: why, of what, and how? In: Spaccapietra S, Zimányi E (eds) Journal of Data Semantics III, Lecture notes in computer science, vol 3534. Springer, Heidelberg, pp 1–24. doi:10.1007/11496168_1

    Google Scholar 

  • Kuhn W (2009) Semantic engineering. In: Navratil G (ed) Research trends in geographic information science, Lecture notes in geoinformation and cartography. Springer, Heidelberg, pp 63–76. doi:10.1007/978-3-540-88244-2_5

    Google Scholar 

  • Mark DM (1993) Toward a theoretical framework for geographic entity types. In: Frank A, Campari I (eds) Spatial information theory a theoretical basis for GIS, Lecture notes in computer science, vol 716. Springer, Heidelberg, pp 270–283. doi:10.1007/3-540-57207-4_18

    Google Scholar 

  • Mark DM, Turk AG (2003) Landscape categories in yindjibarndi: ontology, environment, and language. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory. Foundations of geographic information science, Lecture notes in computer science, vol 2825. Springer, Heidelberg, pp 28–45. doi:10.1007/978-3-540-39923-0_3

    Google Scholar 

  • Mark DM, Freksa C, Hirtle SC, Lloyd R, Tversky B (1999a) Cognitive models of geographical space. Int J Geogr Information Science 13(8):747–774. doi:10.1080/136588199241003

    Google Scholar 

  • Mark DM, Smith B, Tversky B (1999b) Ontology and geographic objects: An empirical study of cognitive categorization. In: Freksa C, Mark D (eds) Spatial information theory. Cognitive and computational foundations of geographic information science, Lecture notes in computer science, vol 1661. Springer, Heidelberg, pp 283–298. doi:10.1007/3-540-48384-5_19

    Google Scholar 

  • Montello DR, Freundschuh S (2005) Cognition of geographic information. A research agenda for geographic information science, pp 61–91

    Google Scholar 

  • Montello DR, Goodchild MF, Gottsegen J, Fohl P (2003) Where’s downtown?: behavioral methods for determining referents of vague spatial queries. Spat Cogn Comput 3(2–3):185–204. doi:10.1080/13875868.2003.9683761

    Google Scholar 

  • Montello DR, Friedman A, Phillips DW (2014) Vague cognitive regions in geography and geographic information science. Int J Geogr Inf Sci 28(9):1802–1820. doi:10.1080/13658816.2014.900178

    Google Scholar 

  • Nosofsky RM (2011) The generalized context model: an exemplar model of classification. Formal approaches in categorization, pp 18–39

    Google Scholar 

  • Ogden CK, Richards (1946) The meaning of meaning. Harcourt, Brace and World, New York

    Google Scholar 

  • Osherson DN (1999) On the adequacy of prototype theory as a theory of concepts Daniel N, Osherson and Edward E. Smith. Concepts: core readings, p 261

    Google Scholar 

  • Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer M, Mark D (eds) Geographic information science, Lecture notes in computer science, vol 2478. Springer, Heidelberg, pp 243–259. doi:10.1007/3-540-45799-2_17

    Google Scholar 

  • Robinson V (2000) Individual and multipersonal fuzzy spatial relations acquired using human-machine interaction. Fuzzy Sets Syst 113(1):133–145. doi:10.1016/S0165-0114(99)00017-2

    Google Scholar 

  • Rosch E (1973) On the internal structure of perceptual and semantic categories. In: Moore TE (ed) Cognitive development and the acquisition of language. Academic Press, Oxford, p 308

    Google Scholar 

  • Rosch E (1999) Principles of categorization. Concepts: core readings, pp 189–206

    Google Scholar 

  • Rosch E, Mervis CB (1975) Family resemblances: studies in the internal structure of categories. Cogn Psychol 7(4):573–605

    Article  Google Scholar 

  • Seiler TB (2001) Begreifen und Verstehen: Ein Buch über Begriffe und Bedeutungen. Wiss.-HRW eK, Allg

    Google Scholar 

  • Smith B, Mark DM (1998) Ontology with human subjects testing. Am J Econ Sociol 58(2):245–312

    Article  Google Scholar 

  • Talmy L (2003) Toward a cognitive semantics, vol 1. MIT press

    Google Scholar 

  • Tversky B (2003) Navigating by mind and by body. In: Freksa C, Brauer W, Habel C, Wender K (eds) Spatial cognition III, Lecture notes in computer science, vol 2685. Springer, Heidelberg, pp 1–10. doi:10.1007/3-540-45004-1_1

    Google Scholar 

  • Twaroch F, Frank A (2005) Sandbox geography—to learn from children the form of spatial concepts. In: Developments in spatial data handling. Springer, Heidelberg, pp 421–433. doi:10.1007/3-540-26772-7_32

  • Von Glasersfeld E (1995) Radical Constructivism: a Way of Knowing and Learning. Stud Math Educ Ser: 6 ERIC

    Google Scholar 

  • Wallgrün JO, Klippel A, Baldwin T (2014) Building a corpus of spatial relational expressions extracted from web documents. In: Proceedings of the 8th workshop on geographic information retrieval, ACM, New York, NY, USA, GIR’14, pp 6:1–6:8. doi:10.1145/2675354.2675702

  • Wang F (1994) Towards a natural language user interface: an approach of fuzzy query. Int J Geogr Inf Syst 8(2):143–162. doi:10.1080/02693799408901991

    Google Scholar 

  • Weiser P, Frank AU (2013) Cognitive transactions—a communication model. In: Tenbrink T, Stell J, Galton A, Wood Z (eds) Spatial information theory, Lecture notes in computer science, vol 8116. Springer, pp 129–148. doi:10.1007/978-3-319-01790-7_8

    Google Scholar 

  • Winter S, Raubal M, Nothegger C (2005) Focalizing measures of salience for wayfinding. In: Meng L, Reichenbacher T, Zipf A (eds) Map-based mobile services. Springer, Heidelberg, pp 125–139. doi:10.1007/3-540-26982-7_9

  • Worboys MF (2001) Nearness relations in environmental space. Int J Geogr Inf Sci 15(7):633–651. doi:10.1080/13658810110061162

    Google Scholar 

  • Worboys MF (2003) Communicating geographic information in context. Foundations of geographic information science, pp 33–45

    Google Scholar 

  • Yao X, Thill JC (2006) Spatial queries with qualitative locations in spatial information systems. Comput Environ Urban Syst 30(4):485–502. doi:10.1016/j.compenvurbsys.2004.08.001. http://www.sciencedirect.com/science/article/pii/S0198971504000523. Geographic Information Retrieval (GIR)

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hahn, J., Fogliaroni, P., Frank, A.U., Navratil, G. (2016). A Computational Model for Context and Spatial Concepts. In: Sarjakoski, T., Santos, M., Sarjakoski, L. (eds) Geospatial Data in a Changing World. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-33783-8_1

Download citation

Publish with us

Policies and ethics