Abstract
A natural language interface can improve human-computer interaction with Geographic Information Systems (GIS). A prerequisite for this is the mapping of natural language expressions onto spatial queries. Previous mapping approaches, using, for example, fuzzy sets, failed because of the flexible and context-dependent use of spatial terms. Context changes the interpretation drastically. For example, the spatial relation “near” can be mapped onto distances ranging anywhere from kilometers to centimeters. We present a context-enriched semiotic triangle that allows us to distinguish between multiple interpretations. As formalization we introduce the notation of contextualized concepts that is tied to one context. One concept inherits multiple contextualized concepts such that multiple interpretations can be distinguished. The interpretation for one contextualized concept corresponds to the intention of the spatial term, and is used as input for a spatial query. To demonstrate our computational model, a next generation GIS is envisioned that maps the spatial relation “near” to spatial queries differently according to the influencing context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout the paper we will use special formatting to indicate when a term is used to denote a concept.
- 2.
In order to remove ambiguity we use special formatting to indicate a context, an exemplar of a concept, or a concept in a specific context (denoted concept @ context).
- 3.
Algorithms are indicated with a small caps typeface.
- 4.
The multiset is capable of holding the same entry multiple times, in contrast to a set.
References
Abdalla A, Weiser P, Frank AU (2013) Design principles for spatio-temporally enabled pim tools: A qualitative analysis of trip planning. In: Vandenbroucke D, Bucher B, Crompvoets J (eds) Geographic information science at the heart of Europe, Lecture notes in geoinformation and cartography. Springer , pp 323–336. doi:10.1007/978-3-319-00615-4_18
Aerts D, Gabora L (2005) A theory of concepts and their combinations i. Kybernetes 34(1/2):167–191. doi:10.1108/03684920510575799
Akman V, Surav M (1996) Steps toward formalizing context. AI Mag 17(3):55. doi:10.1609/aimag.v17i3.1231
Bazire M, Brézillon P (2005) Understanding context before using it. In: Dey A, Kokinov B, Leake D, Turner R (eds) Modeling and using context, Lecture notes in computer science, vol 3554. Springer, Berlin, pp 29–40. doi:10.1007/11508373_3
Bouquet P, Ghidini C, Giunchiglia F, Blanzieri E (2003) Theories and uses of context in knowledge representation and reasoning. J Pragmatics 35(3):455–484. doi: 10.1016/S0378-2166(02)00145-5
Burigo M, Coventry K (2010) Context affects scale selection for proximity terms. Spat Cogn Comput 10(4):292–312. doi:10.1080/13875861003797719
Chandler D (2007) Semiotics: the basics. Routledge
Duckham M, Worboys M (2001) Computational structure in three-valued nearness relations. In: Montello D (ed) Spatial information theory, Lecture notes in computer science, vol 2205. Springer, Berlin, pp 76–91. doi:10.1007/3-540-45424-1_6
Egenhofer MJ, Mark DM (1995) Naive geography. In: Frank A, Kuhn W (eds) Spatial information theory a theoretical basis for GIS, Lecture notes in computer science, vol 988. Springer, Berlin, pp 1–15. doi:10.1007/3-540-60392-1_1
Fauconnier G (1994) Mental spaces: aspects of meaning construction in natural language. Cambridge University Press
Fisher PF (2000) Sorites paradox and vague geographies. Fuzzy Sets Syst 113(1):7–18. doi:10.1016/S0165-0114(99)00009-3
Fisher PF, Orf TM (1991) An investigation of the meaning of near and close on a university campus. Comput Environ Urban Syst 15(1–2):23–35. doi:10.1016/0198-9715(91)90043-D
Frank AU (1992) Qualitative spatial reasoning about distances and directions in geographic space. J Vis Lang Comput 3(4):343–371. doi:10.1016/1045-926X(92)90007-9
Frank AU (2006) Distinctions produce a taxonomic lattice: are these the units of mentalese? In: Bennette B, Fellbaum C (ed) Formal ontology in information systems, vol 150. IOS Press, pp 27–38
Freksa C, Barkowsky T (1996) On the relation between spatial concepts and geographic objects. Geographic objects with indeterminate boundaries, pp 109–121
Gratzer G (2009) Lattice theory: first concepts and distributive lattices. Courier Corporation
Hahn J, Frank AU (2014) Select the appropriate map depending on context in a hilbert space model (scop). In: Atmanspacher H, Haven E, Kitto K, Raine D (eds) Quantum interaction, Lecture notes in computer science, vol 8369. Springer, Heidelberg, pp 122–133. doi:10.1007/978-3-642-54943-4_11
Huang H, Hahn J, Claramunt C, Reichenbacher T (eds) (2014) Proceedings of the 1st international workshop on context—awareness in geographic information services (CAGIS 2014 ). Eigenverlag, Wien. http://publik.tuwien.ac.at/files/PubDat_232845.pdf
Kuhn W (2005) Geospatial semantics: why, of what, and how? In: Spaccapietra S, Zimányi E (eds) Journal of Data Semantics III, Lecture notes in computer science, vol 3534. Springer, Heidelberg, pp 1–24. doi:10.1007/11496168_1
Kuhn W (2009) Semantic engineering. In: Navratil G (ed) Research trends in geographic information science, Lecture notes in geoinformation and cartography. Springer, Heidelberg, pp 63–76. doi:10.1007/978-3-540-88244-2_5
Mark DM (1993) Toward a theoretical framework for geographic entity types. In: Frank A, Campari I (eds) Spatial information theory a theoretical basis for GIS, Lecture notes in computer science, vol 716. Springer, Heidelberg, pp 270–283. doi:10.1007/3-540-57207-4_18
Mark DM, Turk AG (2003) Landscape categories in yindjibarndi: ontology, environment, and language. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory. Foundations of geographic information science, Lecture notes in computer science, vol 2825. Springer, Heidelberg, pp 28–45. doi:10.1007/978-3-540-39923-0_3
Mark DM, Freksa C, Hirtle SC, Lloyd R, Tversky B (1999a) Cognitive models of geographical space. Int J Geogr Information Science 13(8):747–774. doi:10.1080/136588199241003
Mark DM, Smith B, Tversky B (1999b) Ontology and geographic objects: An empirical study of cognitive categorization. In: Freksa C, Mark D (eds) Spatial information theory. Cognitive and computational foundations of geographic information science, Lecture notes in computer science, vol 1661. Springer, Heidelberg, pp 283–298. doi:10.1007/3-540-48384-5_19
Montello DR, Freundschuh S (2005) Cognition of geographic information. A research agenda for geographic information science, pp 61–91
Montello DR, Goodchild MF, Gottsegen J, Fohl P (2003) Where’s downtown?: behavioral methods for determining referents of vague spatial queries. Spat Cogn Comput 3(2–3):185–204. doi:10.1080/13875868.2003.9683761
Montello DR, Friedman A, Phillips DW (2014) Vague cognitive regions in geography and geographic information science. Int J Geogr Inf Sci 28(9):1802–1820. doi:10.1080/13658816.2014.900178
Nosofsky RM (2011) The generalized context model: an exemplar model of classification. Formal approaches in categorization, pp 18–39
Ogden CK, Richards (1946) The meaning of meaning. Harcourt, Brace and World, New York
Osherson DN (1999) On the adequacy of prototype theory as a theory of concepts Daniel N, Osherson and Edward E. Smith. Concepts: core readings, p 261
Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer M, Mark D (eds) Geographic information science, Lecture notes in computer science, vol 2478. Springer, Heidelberg, pp 243–259. doi:10.1007/3-540-45799-2_17
Robinson V (2000) Individual and multipersonal fuzzy spatial relations acquired using human-machine interaction. Fuzzy Sets Syst 113(1):133–145. doi:10.1016/S0165-0114(99)00017-2
Rosch E (1973) On the internal structure of perceptual and semantic categories. In: Moore TE (ed) Cognitive development and the acquisition of language. Academic Press, Oxford, p 308
Rosch E (1999) Principles of categorization. Concepts: core readings, pp 189–206
Rosch E, Mervis CB (1975) Family resemblances: studies in the internal structure of categories. Cogn Psychol 7(4):573–605
Seiler TB (2001) Begreifen und Verstehen: Ein Buch über Begriffe und Bedeutungen. Wiss.-HRW eK, Allg
Smith B, Mark DM (1998) Ontology with human subjects testing. Am J Econ Sociol 58(2):245–312
Talmy L (2003) Toward a cognitive semantics, vol 1. MIT press
Tversky B (2003) Navigating by mind and by body. In: Freksa C, Brauer W, Habel C, Wender K (eds) Spatial cognition III, Lecture notes in computer science, vol 2685. Springer, Heidelberg, pp 1–10. doi:10.1007/3-540-45004-1_1
Twaroch F, Frank A (2005) Sandbox geography—to learn from children the form of spatial concepts. In: Developments in spatial data handling. Springer, Heidelberg, pp 421–433. doi:10.1007/3-540-26772-7_32
Von Glasersfeld E (1995) Radical Constructivism: a Way of Knowing and Learning. Stud Math Educ Ser: 6 ERIC
Wallgrün JO, Klippel A, Baldwin T (2014) Building a corpus of spatial relational expressions extracted from web documents. In: Proceedings of the 8th workshop on geographic information retrieval, ACM, New York, NY, USA, GIR’14, pp 6:1–6:8. doi:10.1145/2675354.2675702
Wang F (1994) Towards a natural language user interface: an approach of fuzzy query. Int J Geogr Inf Syst 8(2):143–162. doi:10.1080/02693799408901991
Weiser P, Frank AU (2013) Cognitive transactions—a communication model. In: Tenbrink T, Stell J, Galton A, Wood Z (eds) Spatial information theory, Lecture notes in computer science, vol 8116. Springer, pp 129–148. doi:10.1007/978-3-319-01790-7_8
Winter S, Raubal M, Nothegger C (2005) Focalizing measures of salience for wayfinding. In: Meng L, Reichenbacher T, Zipf A (eds) Map-based mobile services. Springer, Heidelberg, pp 125–139. doi:10.1007/3-540-26982-7_9
Worboys MF (2001) Nearness relations in environmental space. Int J Geogr Inf Sci 15(7):633–651. doi:10.1080/13658810110061162
Worboys MF (2003) Communicating geographic information in context. Foundations of geographic information science, pp 33–45
Yao X, Thill JC (2006) Spatial queries with qualitative locations in spatial information systems. Comput Environ Urban Syst 30(4):485–502. doi:10.1016/j.compenvurbsys.2004.08.001. http://www.sciencedirect.com/science/article/pii/S0198971504000523. Geographic Information Retrieval (GIR)
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Hahn, J., Fogliaroni, P., Frank, A.U., Navratil, G. (2016). A Computational Model for Context and Spatial Concepts. In: Sarjakoski, T., Santos, M., Sarjakoski, L. (eds) Geospatial Data in a Changing World. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-33783-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-33783-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-33782-1
Online ISBN: 978-3-319-33783-8
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)