• Basanta Kumara Behera
  • Ajit Varma


Update information on biogas production by the breakdown of organic matter in the presence of consortium of microbes, under anaerobic condition, has been well documented. In this connection, global methods of biogas production, enrichment, compression, and storage for energy generation highlighted its potential application in meeting energy needs both in developing and developed countries which have also been described with facts and figures. Special attention has been paid to highlight commercialization of biogas production technology to meet the challenge in solving rural energy crisis under effective management program. In addition, technology on the generation of electricity from biogas to solve localized energy problem has also been narrated with catchy graphic models. Unlike other forms of renewable energy, biogas neither has any geographical limitations nor required technology for producing energy, and it is neither complex nor monopolistic.


Anaerobic Digestion Hydraulic Retention Time Hydrogen Sulfide Biogas Production Volatile Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mang HP et al (2013) Biogas production. Dev Ctries Renew Energy Syst 218–246Google Scholar
  2. 2.
    Weiland P (2010) Biogas production: current state and perspectives. Microbiol Biotechnol 85:849–860CrossRefGoogle Scholar
  3. 3.
    Rajendran K et al (2013) Experimental and economical evaluation of a novel biogas digester. Energy Convers Manage 74:183–191CrossRefGoogle Scholar
  4. 4.
    Buysman E, Mol APJ (2013) Market-based biogas sector development in least developed countries—the case of Cambodia. Energy Policy 63:44–51CrossRefGoogle Scholar
  5. 5.
    Gwavuya SG et al (2012) Household energy economics in rural Ethiopia: a cost-benefit analysis of biogas energy. Renew Energy 48:202–209CrossRefGoogle Scholar
  6. 6.
    Kabir H et al (2013) Factors determinant of biogas adoption in Bangladesh. Renew Sustain Energy Rev 28:881–889CrossRefGoogle Scholar
  7. 7.
    Landi M et al (2013) Cooking with gas: policy lessons from Rwanda’s National Domestic Biogas Program (NDBP). Energy Sustain Dev 17:347–356CrossRefGoogle Scholar
  8. 8.
    Nzila C et al (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energy 93:496–506CrossRefGoogle Scholar
  9. 9.
    Tigabu AD et al (2013) Technology innovation systems and technology diffusion: adoption of bio-digestion in an emerging innovation system in Rwanda. Technol Forecast Soc Change. doi: 10.1016/j.techfore.10.011 Google Scholar
  10. 10.
    Laramee J, Davis J (2013) Economic and environmental impacts of domestic bio-digesters: evidence from Arusha, Tanzania. Energy Sustain Dev 17:296–304CrossRefGoogle Scholar
  11. 11.
    Green JM, Sibisi NT (2002) Domestic biogas digesters: a comparative study. In: Domestic use of energy conference, Cape Town, South Africa.
  12. 12.
    Garfí M et al (2012) Evaluating benefits of low-cost household digesters for rural Andean communities. Renew Sustain Energy Rev 16:575–578CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Varma A, Behera B (2003) Green energy. Capital Publishing, New DelhiGoogle Scholar
  15. 15.
    Zhang C et al (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 2014(38):383–392CrossRefGoogle Scholar
  16. 16.
    Jang HM et al (2013) Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production. Bioresour Technol 145:80–89PubMedCrossRefGoogle Scholar
  17. 17.
    Kim S et al (2014) A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): performance and microbial structure analysis using pyrosequencing. Process Biochem 49:301–308CrossRefGoogle Scholar
  18. 18.
    Kampmann K et al (2012) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413PubMedCrossRefGoogle Scholar
  19. 19.
    Yagi H et al (2011) RNA analysis of anaerobic sludge during anaerobic biodegradation of cellulose and poly(lactic acid) by RT-PCR–DGGE. Polym Degrad Stab 96:547–552CrossRefGoogle Scholar
  20. 20.
    Ramsay IR, Pullammanappallil P (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257PubMedCrossRefGoogle Scholar
  21. 21.
    Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114CrossRefGoogle Scholar
  22. 22.
    Iea-biogas (2012) Accessed 25 Mar 2012
  23. 23.
    Raven RPJM, Gregersen KH (2007) Biogas plants in Denmark: successes and setbacks. Renew Sustain Energy Rev 11:116–132CrossRefGoogle Scholar
  24. 24.
    Parawira W (2009) Biogas technology in sub-Saharan Africa: status, prospects and constraints. Rev Environ Sci Biotechnol 8:187–200CrossRefGoogle Scholar
  25. 25.
    Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 417–442Google Scholar
  26. 26.
    Madigan MT et al (2009) Brock biology of microorganisms, 12th edn. Pearson Education, Pearson Benjamin Cummings, San Francisco, CAGoogle Scholar
  27. 27.
    Angelidaki I, Ellegaard L (2002) Anaerobic digestion in Denmark: past, present and future. In: Anaerobic digestion for sustainability in waste (water) treatment and re-use. Proceedings of 7th FAO/SREN-workshop, 19–22 May 2002, Moscow, Russia, pp 129–138Google Scholar
  28. 28.
    Bartacek J et al (2007) Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Bioref 1:201–214CrossRefGoogle Scholar
  29. 29.
    Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. In: Marshall KC (ed) Advances in microbial ecology, vol 8. Springer, Heidelberg, pp 237–299CrossRefGoogle Scholar
  30. 30.
    Jimenez S et al (1990) Influence of lignin on the methanization of lignocellulosic wastes. Biomass 21:43–54CrossRefGoogle Scholar
  31. 31.
    Batstone DJ et al (2002) Anaerobic digestion model No. 1 (ADM1). IWA Publishing, LondonGoogle Scholar
  32. 32.
    Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676PubMedPubMedCentralGoogle Scholar
  33. 33.
    Cui M et al (2010) Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int J Hydrogen Energy 35:4041–4047CrossRefGoogle Scholar
  34. 34.
    Hallenbeck PC (2005) Fundamentals of fermentative hydrogen production. Water Sci Technol 52:21–29PubMedGoogle Scholar
  35. 35.
    Logan BE et al (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535PubMedCrossRefGoogle Scholar
  36. 36.
    Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529PubMedCrossRefGoogle Scholar
  37. 37.
    Bayr S, Rintala J (2012) Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Res 46:4713–4720PubMedCrossRefGoogle Scholar
  38. 38.
    Ghanimeh S et al (2012) Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour Technol 17:63–71CrossRefGoogle Scholar
  39. 39.
    Zhang C et al (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392CrossRefGoogle Scholar
  40. 40.
    Gijzen HJ (2002) Anaerobic digestion for sustainable development: a natural approach. Water Sci Technol 45:321–328Google Scholar
  41. 41.
    Gijzen HJ (2001) Anaerobes, aerobes and phototrophs: a winning team for wastewater management. Water Sci Technol 44:123–132PubMedGoogle Scholar
  42. 42.
    Pehlivan E (2009) Biogas production as an environmentally-friendly renewable energy source. In: 9th international multidisciplinary scientific geo conference - SGEM2009,, SGEM2009 conference proceedings. ISBN 10: 954-91818-1-2. 2:373–382
  43. 43.
    Green JM, Sibisi MNT (2002) Domestic biogas digesters: a comparative study. In: Proceedings of domestic use of energy conference, Cape Town, South Africa, 2–3:33–38Google Scholar
  44. 44.
    Hall DO, Moss PA (1983) Biomass for energy in developing countries. Geojournal 7:5–14CrossRefGoogle Scholar
  45. 45.
    Georgakakis D et al (2001) Development and use of an economic evaluation model to assess establishment of local centralized rural biogas plants in Greece. Appl Biochem Biotechnol 109:275–284CrossRefGoogle Scholar
  46. 46.
    Jiang X et al (2011) A review of the biogas industry in China. Energy Policy 39:6073–6081CrossRefGoogle Scholar
  47. 47.
    Thien Thu CT et al (2012) Manure management practices on biogas and non-biogas pig farms in developing countries—Using livestock farms in Vietnam as an example. J Clean Prod 27:64–71CrossRefGoogle Scholar
  48. 48.
    Austin G, Morris G (2012) Biogas production in Africa. In: Bioenergy for sustainable development in Africa. Springer Netherlands, Dordrecht, pp 103–115CrossRefGoogle Scholar
  49. 49.
    NDRC (2007) Medium and long-term development plan for renewable energy in China. National Development and Reform Commission, BeijingGoogle Scholar
  50. 50.
    Khoiyangbam RS (2011) Environmental implications of biomethanation in conventional biogas plants. Iran J Energy Environ 2:181–187Google Scholar
  51. 51.
    Sarkar AN (1982) Research and development work in biogas technology. J Sci Ind Res 41:279–291Google Scholar
  52. 52.
    Snv World (2012) Accessed 23 Mar 2012
  53. 53.
    Richards B et al (1994) In situ methane enrichment in methanogenic energy crop digesters. Biomass Bioenergy 6(4):275CrossRefGoogle Scholar
  54. 54.
    Richards B et al (1991) Methods for kinetic analysis of methane fermentation in high solids biomass digesters. Biomass Bioenergy 1:65–66CrossRefGoogle Scholar
  55. 55.
    State Energy Conservation Office (2009) Biomass energy: manure for fuel. State Energy Conservation Office (Texas). State of Texas, Web. 3 Oct 2009Google Scholar
  56. 56.
    Webber ME, Amanda DC (2009) Cow power. In: The news: short news items of interest to the scientific community. Sci Children os 46.1:13. Gale. Web. 1 October 2009 in United StatesGoogle Scholar
  57. 57.
    Petersson A, Wellinger A (2009) Biogas upgrading technologies - developments and innovations. IEA Bioenergy Task 37Google Scholar
  58. 58.
    Amanda DC, Webber ME (2008) Cow power: the energy and emissions benefits of converting manure to biogas. Environ Res Lett 3:034002. doi: 10.1088/1748-9326/3/3/034002 CrossRefGoogle Scholar
  59. 59.
    Zezima K (2009) Electricity from what cows leave behind. The New York Times, 23 Sept 2008, natl. ed.: SPG9. Web. 1 Oct 2009
  60. 60.
    State Energy Conservation Office (2009) Biomass energy: manure for fuel. State Energy Conservation Office (Texas). State of Texas, 23 Apr 2009. Web. 3 Oct 2009
  61. 61.
    U.S. farm anaerobic digestion systems: a 2010 snapshot. EPA: Washington, DC.…/manure_digester_biogas.cfm/
  62. 62.
    Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35:1613–1622CrossRefGoogle Scholar
  63. 63.
    Amigun B, Von Blottnitz H (2009) Capital cost prediction for biogas installations in Africa: Lang factor approach. Environ Prog Sustain Energy 28:134–142CrossRefGoogle Scholar
  64. 64.
    Africa Biogas (2012) Accessed 23 Mar 2012
  65. 65.
    Omer AM, Fadalla Y (2003) Biogas energy technology in Sudan. Renew Energy 28:499–507CrossRefGoogle Scholar
  66. 66.
    Angelidaki I, Plugge CM, Stams AJM et al (2011) Biomethanation and its potential. Methods Enzymol 494:327–351PubMedCrossRefGoogle Scholar
  67. 67.
    Mohan SV (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34:7460–7474CrossRefGoogle Scholar
  68. 68.
    Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582CrossRefGoogle Scholar
  69. 69.
    Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39CrossRefGoogle Scholar
  70. 70.
    Levin DB et al (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrogen Energy 34:7390–7403CrossRefGoogle Scholar
  71. 71.
    Zhao C et al (2009) High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 °C) mixed culture environment. Int J Hydrogen Energy 34:5657–5665CrossRefGoogle Scholar
  72. 72.
    Akutsu Y et al (2008) Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrogen Energy 33:6541–6548CrossRefGoogle Scholar
  73. 73.
    Wang A, Sun D, Cao G et al (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 12:4137–4143CrossRefGoogle Scholar
  74. 74.
    Ren N et al (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060PubMedCrossRefGoogle Scholar
  75. 75.
    Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 34:7379–7389CrossRefGoogle Scholar
  76. 76.
    Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297PubMedCrossRefGoogle Scholar
  77. 77.
    Liu J et al (2004) On-line monitoring of a two-stage anaerobic digestion process using a BOD analyzer. J Biotechnol 109:263–275PubMedCrossRefGoogle Scholar
  78. 78.
    Ward AJ et al (2008) Optimisation of the anaerobic digestion of agricultural residues. Bioresour Technol 99:7928–7940PubMedCrossRefGoogle Scholar
  79. 79.
    Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40:3542–3549CrossRefGoogle Scholar
  80. 80.
    Cooney M et al (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Bioresour Technol 98:2641–2651PubMedCrossRefGoogle Scholar
  81. 81.
    Antonopoulou G et al (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119PubMedCrossRefGoogle Scholar
  82. 82.
    Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236PubMedCrossRefGoogle Scholar
  83. 83.
    Yang Z et al (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrogen Energy 36:3465–3470CrossRefGoogle Scholar
  84. 84.
    Li R, Chen S, Li X (2009) Anaerobic co digestion of kitchen waste and cattle manure for methane production. Energy Sources 31:1848–1856CrossRefGoogle Scholar
  85. 85.
    Md Forhad Ibne Al et al (2013) Development of biogas processing from cow dung, poultry waste, and water hyacinth. Int J Nat Appl Sci 2:13-17Google Scholar
  86. 86.
    Webber ME, Amanda DC (2008) Cow power. In: The news: short news items of interest to the scientific community. Sci Child os 46.1:13. Gale. Web. 1 Oct 2009 in United StatesGoogle Scholar
  87. 87.
    Chynoweth DP et al (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5:95–111CrossRefGoogle Scholar
  88. 88.
    Owen WF et al (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492CrossRefGoogle Scholar
  89. 89.
  90. 90.
    Jha AK et al (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10:14242–14253Google Scholar
  91. 91.
    Barth C, Powers T (2008) Agricultural waste characteristics. In: Agricultural waste management field handbook, vol 9. United States Department of Agriculture, Columbia, SC, pp 1–32Google Scholar
  92. 92.
    Shamsul M et al (2006) Studies on the effect of urine on biogas production. Bangladesh J Sci Ind Res 41:23–32Google Scholar
  93. 93.
    Nawirska A, Kwaniewska M (2005) Dietary fibre fractions from fruit and vegetable processing waste. Food Chem 91:221–225CrossRefGoogle Scholar
  94. 94.
    Jenny Gustavsson et al (2011) Global food losses and food waste: extent, causes and prevention. Swedish Institute for Food and Biotechnology (SIK), Gothenburg, Sweden and FAO, RomeGoogle Scholar
  95. 95.
    Alvarez JM et al (1990) Performance of digesters treating the organic fraction of municipal solid waste differently sorted. Biol Wastes 33:181–199CrossRefGoogle Scholar
  96. 96.
    Speece RE (1996) Anaerobic biotechnology for industrial wastewater. Archae Press, Nashville, TNGoogle Scholar
  97. 97.
    Afifi MM (2011) Enhancement of lactic acid production by utilizing liquid potato wastes. Int J Biol Chem 5:91–102CrossRefGoogle Scholar
  98. 98.
    Arapoglou D et al (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902PubMedCrossRefGoogle Scholar
  99. 99.
    Parawira W et al (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29:1811–1823CrossRefGoogle Scholar
  100. 100.
    Parawira W et al (2006) Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renew Energy 31:893–903CrossRefGoogle Scholar
  101. 101.
    Wantanee A, Sureelak R (2004) Laboratory scale experiments for biogas production from cassava tubers. In: The joint international conference on “sustainable energy and environment (SEE)”, 1–3 Dec 2004, Hua Hin, ThailandGoogle Scholar
  102. 102.
    Bao B, Chang KC (1994) Carrot pulp chemical composition, color, and water holding capacity as affected by blanching. J Food Sci 59:1159–1161CrossRefGoogle Scholar
  103. 103.
    Hampannavar US, Shivayogimath CB (2010) Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. Int J Environ Sci 1:631–639Google Scholar
  104. 104.
    Saev M et al (2009) Anaerobic co-digestion of wasted tomatoes and cattle dung for biogas production. J Univ Chem Tech Metallurgy 44:55–60Google Scholar
  105. 105.
    Trujillo D et al (1993) Energy recovery from wastes: anaerobic digestion of tomato plant mixed with rabbit wastes. Bioresour Technol 45:81–83CrossRefGoogle Scholar
  106. 106.
    Westerman PW (1985) Available nutrients in livestock waste. In: Agricultural waste utilization and management. Proceedings of the fifth international symposium on agricultural wastes, ASAE, St. Joseph, MIGoogle Scholar
  107. 107.
    Benıtez V et al (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr 66:48–57PubMedCrossRefGoogle Scholar
  108. 108.
    CPCB (2007) Bio-methanation potential of solid wastes from agro-based industries. Ministry of Environment and Forests Government of India, New DelhiGoogle Scholar
  109. 109.
    Das H, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry—a critical appraisal. Crit Rev Food Sci Nutr 44:77–89PubMedCrossRefGoogle Scholar
  110. 110.
    Verrier D et al (1987) Two phase methanation of solid vegetable wastes. Biol Wastes 22:163–177CrossRefGoogle Scholar
  111. 111.
    Allon E et al (2006) Relationships among growing degree-days, tenderness, other harvest attributes and market value of processing pea (Pisum sativum L.) cultivars grown in Quebec. Can J Plant Sci 86:525–537CrossRefGoogle Scholar
  112. 112.
    Lenihan P et al (2011) Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, Croatia, pp 293–308Google Scholar
  113. 113.
    Mojtahedi M, Mesgaran MD (2009) Variability in the chemical composition and in situ ruminal degradability of sugar beet pulp produced in North-East Iran. Res J Biol Sci 4:1262–1266CrossRefGoogle Scholar
  114. 114.
    Klingspohn U et al (1993) Utilization of potato pulp from potato starch processing. Process Biochem 28:91–98CrossRefGoogle Scholar
  115. 115.
    Kavitha P et al (2005) Nutritive value of dried tomato (Lycopersicon esculentum) pomace in cockerels. Anim Nutr Feed Technol 5:107–111Google Scholar
  116. 116.
    Mayer F (1998) Potato pulp: properties, physical modification and applications. Polym Degrad Stab 59:231–235CrossRefGoogle Scholar
  117. 117.
    Kramer A, Kwee WH (1977) Utilization of tomato processing wastes. J Food Sci 42:212–215CrossRefGoogle Scholar
  118. 118.
    Rizal Y et al (2010) Utilization juice wastes as corn replacement in the broiler diet. WASET 68:1449–1452Google Scholar
  119. 119.
    Lehto M et al (2005) Wastes and wastewaters from vegetable peeling processes. In: Information and technology for sustainable fruit and vegetable production, the 9th Fruit, nut and vegetable production engineering symposium, 19–22 May 2015, MontpellierGoogle Scholar
  120. 120.
    Cecchi F et al (1990) Anaerobic digestion and composting in an integrated strategy for managing vegetable residues from agro-industries or sorted organic fraction of municipal solid wastes. Water Sci Technol 22:33–41Google Scholar
  121. 121.
    Colón J et al (2015) Anaerobic digestion of undiluted simulant human excreta for sanitation and energy recovery in less-developed countries. Energy Sustain Dev 29:57–64CrossRefGoogle Scholar
  122. 122.
    Sharma KD et al (2012) Chemical composition, functional properties and processing of carrot—a review. J Food Sci Technol 49:22–32PubMedCrossRefGoogle Scholar
  123. 123.
    Zhao Xihni (1988) Treatment of night soil by biogas digester: China’s rural experience. Appropriate Technology UK. 4 Mar 1988Google Scholar
  124. 124.
    Among G (1978) New use for liquid whey fermentation, Saccharomyces fragilis, protein food. Food Eng 50:100–106Google Scholar
  125. 125.
    Andrés Illanes (2011) Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 14(6)Google Scholar
  126. 126.
    Jeffrey EF, Williston PE, Vermont (2000) Report on-Vermont methane pilot project resource assessment.
  127. 127.
    Goyal N, Gandhi DN (2009) Comparative analysis of Indian paneer and cheese whey for electrolyte whey drink. World J Dairy Food Sci 4(1):70–72Google Scholar
  128. 128.
  129. 129.
    Uziel M et al (1975) Solar energy fixation and conversion with algal-bacterial system. Final project report, National Science Foundation Grant No.G1.39216. University of California, Berkeley, CAGoogle Scholar
  130. 130.
    Dohn EH (1980) In: Stafferd SDA, Wheatley BI, Huges DE (eds) Anaerobic digestion. Applied Science Publisher, London, pp 429–448Google Scholar
  131. 131.
    Sohgen NL (1906) Uber Bakterien, welche Methane ats Kohlenstoff nahrung and energiequelle gebrauchen. Zentralbl Baketeriol Parastink Abt 15:513–517Google Scholar
  132. 132.
    Bryant MP (1979) Microbial methane production: theoretical aspects. J Anim Sci 48:193–201Google Scholar
  133. 133.
    Peilex JP et al (1987) Influence of strong agitation on methanogenesis from H2-CO2. In: Grassi G, Delmon B, Molle JF, Ibetta H (eds) Biomass for energy and industry. Elsevier, AmsterdamGoogle Scholar
  134. 134.
    López-López A et al (2008) Estudio comparativo entre un proceso fisicoquímico y uno biologic para tartar agua residual de rastro. Interciencia 33:490–496Google Scholar
  135. 135.
    Sollo FW (1960) Pond treatment of meat packing wastes. In: Proceeding of the fifteenth annual Purdue industrial waste conference. Purdue University, Purdue, INGoogle Scholar
  136. 136.
    Sáez J, Martínez A (1987) Studio comparativo de distintos coagulantes inorgánicos en el tratamiento de efluents líquidos de matadero. Tecnología del Agua 39:96–100Google Scholar
  137. 137.
    Couillard D, Gariépy S, Tran FT (1989) Slaughterhouse effluent treatment by thermophilic aerobic process. Water Res 23:573–579CrossRefGoogle Scholar
  138. 138.
    Hickey R et al (1992) The start-up, operation, monitoring and control of high-rate anaerobic treatment system. Water Sci Technol 24:207–255Google Scholar
  139. 139.
    Tritt WP, Schuchardt F (1992) Materials flow and possibilities of treating liquid and solid wastes from slaughterhouses in Germany: a review. Bioresour Technol 41:235–245CrossRefGoogle Scholar
  140. 140.
    Massé DI, Masse L (2000) Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can Agric Eng 42:139–146Google Scholar
  141. 141.
    Duque-Sarango PJ, Chinchay-Rojas LV (2008) Caracterización de residues sólidos, efluentes residuales y evaluación de impactos ambientales en tres mataderos de anadoen la provincia de Loja-Ecuador. III Congreso Interamericano de Salud Ambiental EcuadorGoogle Scholar
  142. 142.
    Torkian A et al (2003) The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resour Conserv Recycling 40:1–11CrossRefGoogle Scholar
  143. 143.
    Ochieng Otieno FA (1996) Anaerobic digestion of wastewaters with high strength sulphates. Discov Innov 8:143–150Google Scholar
  144. 144.
    Chen Y et al (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064PubMedCrossRefGoogle Scholar
  145. 145.
    Hejnfelt A, Angelidaki I (2009) Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy 33:1046–1054CrossRefGoogle Scholar
  146. 146.
    Jiunn-Jyi L et al (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524CrossRefGoogle Scholar
  147. 147.
    Siegrist H et al (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123PubMedCrossRefGoogle Scholar
  148. 148.
    Zinder SH (1884) Microbiology of anaerobic conversion of organic wastes to methane: recent developments. ASM News 50:294–298Google Scholar
  149. 149.
    Schnürer A, Nordberg Å (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740PubMedCrossRefGoogle Scholar
  150. 150.
    Vallin L, Christiansson A, Arnell M et al (2007) Operational experiences of cost effective production in Linköping, Sweden. Biogasmax Integrated Project No. 019795Google Scholar
  151. 151. SLU- Ethanol Process (2007)
  152. 152.
    European Community Regulation (2002) (EC) No. 1774/2002 of the European Parliament and of the Council laying down health rules concerning animal by-products not intended for human consumption. Off J L 273:1–95Google Scholar
  153. 153.
    McCarty PL (1982) One hundred years of anaerobic treatment. In: Hughes DE, Stafford DA, Wheatley BI et al (eds) Anaerobic digestion, 1981: proceedings of the second international symposium on anaerobic digestion. Elsevier Biomedical, Amsterdam, pp 3–22Google Scholar
  154. 154.
    Habets L, Zumbrgel M (1998) Biologische Aufbereitung eines geschlossenen Wasserkreislaufes mit Schwefelr ̧ckgewinnung in einer neuen Papierfabrik. Wasser-Abwasser Gwf 139(11):733–736Google Scholar
  155. 155.
    Webber J (1972) Effects of toxic metals in sewage on crops. Water Pollut Control 71:404–413Google Scholar
  156. 156.
    Murphy JD et al (2004) Technical/economic/environmental analysis of biogas utilization. Appl Energy 77:407–427CrossRefGoogle Scholar
  157. 157.
    Okkerse C, Bekkum HV (1999) From fossil to green. Green Chem 1:107–114CrossRefGoogle Scholar
  158. 158.
    Pearson J (1989) Major anaerobic plants start up. Pulp Pap Int 31:57–58Google Scholar
  159. 159.
    Arnon G (1978) New use for liquid whey fermentation, Saccharomyces fragilis, protein food. Food Eng 50:100–106Google Scholar
  160. 160.
    Kabrick RM, Jewell WJ (1982) Fate of pathogens in thermophilic aerobic sludge digestion. Water Res 16:1051–1060CrossRefGoogle Scholar
  161. 161.
    Lindfield R (1977) Potato cyst eelworm studies AWA. In: Research seminar on pathogen in sewage sludge. Research and Development Technological Note No. 7. Department of the Environment.Google Scholar
  162. 162.
    Pike EB et al (1983) Inactivation of the parasites of Taenia saginata and Ascaris …. Water Pollut Control 82:501–509Google Scholar
  163. 163.
    Webber J (1972) Effect of toxic metals on crops. J Water Pollut Control 71:404–413Google Scholar
  164. 164.
    Forster CF (1985) Biotechnology and waste water treatment. Cambridge University Press, Cambridge, pp 194–235Google Scholar
  165. 165.
    Gary D et al (2007) The effect of the microsludge treatment process on anaerobic digestion performance. In: Water Environment Federation’s annual technical exhibition and conference, San Diego, CA, USA, 13–17 Oct 2007Google Scholar
  166. 166.
    Weemaes M, Verstraete W (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol 73:83–92CrossRefGoogle Scholar
  167. 167.
    Cui R, Jahng DJ (2004) Nitrogen control in AO process with recirculation of solubilized excess sludge. Water Res 38:1159–1172PubMedCrossRefGoogle Scholar
  168. 168.
    Saktaywin W et al (2005) Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res 39:902–910PubMedCrossRefGoogle Scholar
  169. 169.
    Muller JA (2000) Pre-treatment processes for recycling and reuse of sewage sludge. Water Sci Technol 42:167–174Google Scholar
  170. 170.
    Chu L et al (2009) Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Res 43:1811–1822PubMedCrossRefGoogle Scholar
  171. 171.
    Shang M, Hou H (2009) Studies on effect of peracetic acid pretreatment on anaerobic fermentation biogas production from sludge. In: Power and energy engineering conference 2009, Asia-Pacific.Google Scholar
  172. 172.
    Penaud V et al (1999) Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb Technol 25:258–263CrossRefGoogle Scholar
  173. 173.
    Sridhar P et al (2010) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem. doi: 10.1016/j.ultsonch.2010.02.014 Google Scholar
  174. 174.
    Baier U, Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Sci Technol 36:137–143CrossRefGoogle Scholar
  175. 175.
    Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41:4273–4286PubMedCrossRefGoogle Scholar
  176. 176.
    Kunz P et al (1994) Disintegration von Klärschlamm. Tagungsland der 8. Krlsruher Flochungsstage, Universität Karlsruher Flochungstage, Universität Karlsruhe, 139–169Google Scholar
  177. 177.
    Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240PubMedCrossRefGoogle Scholar
  178. 178.
    Appels L et al (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Energy Combust Sci 34:755–781CrossRefGoogle Scholar
  179. 179.
    Matthew PJ (1983) Agricultural utilization of sewage sludge in the UK. Water Sci Technol 1:135–149Google Scholar
  180. 180.
    Swanwick JD et al (1969) A survey on the performance of sewage sludge digestion in Great Britain. J Water Pollut Control 68:639–651Google Scholar
  181. 181.
    Ralph EHS (2004) Biomass, bioenergy and biomaterials: future prospects. In: Anonymous (ed) Biomass and agriculture: sustainability, markets and policies. OECD, ParisGoogle Scholar
  182. 182.
    Soares Neto TG et al (2009) Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. J Atmos Environ 43:438–446CrossRefGoogle Scholar
  183. 183.
    Mital KM (1996) Biogas systems: principles and applications. New Age International, New DelhiGoogle Scholar
  184. 184.
    Zeikus JG et al (1980) Microbiology of methanogenesis in thermal volcanic environments. J Bacteriol 143:432–440PubMedPubMedCentralGoogle Scholar
  185. 185.
    Hobson PN, Shaw BG (1973) The bacterial population of piggery-waste anaerobic digesters. Water Res 8:507–516CrossRefGoogle Scholar
  186. 186.
    Iannotti EL et al (1978) Medium for the enumeration and isolation of bacteria from a swine waste digester. Appl Environ Microbiol 36:555–566PubMedPubMedCentralGoogle Scholar
  187. 187.
    Mah RA, Sussman C (1967) Microbiology of anaerobic sludge fermentation. I-Enumeration of the non-methanogenic anaerobic bacteria. Appl Microbiol 16:358–361Google Scholar
  188. 188.
    Labat M, Garcia JL (1986) Study of the development of methanogenic microflora during anaerobic digestion of sugar beet pulp. Appl Microbiol Biotechnol 25:163–168CrossRefGoogle Scholar
  189. 189.
    Kohl A, Nielsen R (1997) Gas purification, 5th edn. Elsevier, AmsterdamGoogle Scholar
  190. 190.
    Libralato G, Ghirardini AV, Avezzu F (2010) Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine. J Hazard Mater 176:535–539PubMedCrossRefGoogle Scholar
  191. 191.
    de Hullu J et al (2008) Comparing different biogas upgrading techniques. Eindhoven University of Technology, Eindhoven, Google Scholar
  192. 192.
    Tock L et al (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 34:1838–1854CrossRefGoogle Scholar
  193. 193.
    Burr B, Lyddon L (2008) A comparison of physical solvents for acid gas removal. Gas Processors’ Association Convention, Grapevine, TXGoogle Scholar
  194. 194.
    Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley-VCH, New YorkGoogle Scholar
  195. 195.
    Vandevivere P, de Baere L (2002) Types of anaerobic digesters for solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. London, pp 336–367. Accessed 30 May 2010
  196. 196.
    Verma S (2002) Anaerobic digestion of biodegradable organics in municipal solid wastes, MSc thesis. Columbia University, New YorkGoogle Scholar
  197. 197.
    Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365CrossRefGoogle Scholar
  198. 198.
    Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 57–58:711–727CrossRefGoogle Scholar
  199. 199.
    Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161CrossRefGoogle Scholar
  200. 200.
    Negro MJ et al (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenergy 25:301–308CrossRefGoogle Scholar
  201. 201.
    Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova 26:863–871CrossRefGoogle Scholar
  202. 202.
    Gossett JM et al (1982) Heat treatment and anaerobic digestion of refuse. J Environ Eng Div 108:437–454Google Scholar
  203. 203.
    Brownell HH et al (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28:792–801PubMedCrossRefGoogle Scholar
  204. 204.
    Grethlein HE, Converse AO (1991) Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresour Technol 36:77–82CrossRefGoogle Scholar
  205. 205.
    Lawther JM et al (1996) Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 60:1827–1837CrossRefGoogle Scholar
  206. 206.
    Overend RP et al (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc Lond 32:523–536CrossRefGoogle Scholar
  207. 207.
    Chornet E, Overend RP (1988) Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. In: Proceedings of the international workshop on steam explosion techniques: fundamentals and industrial applications, Milan, Italy, pp 21–58Google Scholar
  208. 208.
    Digman MF et al (2010) Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol 101:5305–5314PubMedCrossRefGoogle Scholar
  209. 209.
    Li C et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906PubMedCrossRefGoogle Scholar
  210. 210.
    Harmsen P et al (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food & Biobased Research, WageningenGoogle Scholar
  211. 211.
    McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324Google Scholar
  212. 212.
    Chen Y et al (2007) Potential of agricultural residues and hay for bioethanol production. Appl Biochem Biotechnol 142:276–290PubMedCrossRefGoogle Scholar
  213. 213.
    Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98PubMedCrossRefGoogle Scholar
  214. 214.
    Wyman CE, Abelson PH (eds) (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DCGoogle Scholar
  215. 215.
    Kong F et al (1992) Effects of cell-wall acetate, xylan backbone and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34–35:23–35CrossRefGoogle Scholar
  216. 216.
    Song Z et al (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7:3223–3236Google Scholar
  217. 217.
    Chang V et al (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63–65:3–19PubMedCrossRefGoogle Scholar
  218. 218.
    Fukaya et al (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46Google Scholar
  219. 219.
    Feng L, Zl C (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq Biotechnol Bioeng 38:1308Google Scholar
  220. 220.
    Zhu S (2008) Use of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779CrossRefGoogle Scholar
  221. 221.
    Heinze T et al (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 24:520–525CrossRefGoogle Scholar
  222. 222.
    Dadi AP et al (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 1–12:407–421Google Scholar
  223. 223.
    Wu J et al (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268PubMedCrossRefGoogle Scholar
  224. 224.
    Swatloski RP et al (2009) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  225. 225.
    Stuckey DC (1984) Biogas plant in developing countries: a critical appraisal. Imperial College of Science and Technology, LondonGoogle Scholar
  226. 226.
    Sohm H (1984) Anaerobic wastewater treatment. Adv Biochem Eng Biotechnol 29:83–115Google Scholar
  227. 227.
    Hang YW (1984) Pre-treatment of crop residues for production. In: Biomass conversion. Bioenergy source materialsGoogle Scholar
  228. 228.
    Gautam R et al (2009) Biogas as a sustainable energy source in Nepal: present status and future challenges. Renew Sustain Energy Rev 13:248–252CrossRefGoogle Scholar
  229. 229.
    Daxiong Q et al (1990) Diffusion and innovation in the Chinese biogas program. World Dev 18:555–563CrossRefGoogle Scholar
  230. 230.
    Tomar SS (1994) Status of biogas plant in India. Renew Energy 5:829–831CrossRefGoogle Scholar
  231. 231.
    Adeoti O et al (2000) Engineering design and economic evaluation of a family-sized biogas project in Nigeria. Technovation 20:103–108CrossRefGoogle Scholar
  232. 232.
    Akinbami JFK et al (2001) Biogas energy use in Nigeria: current status, future prospects and policy implications. Renew Sustain Energy Rev 5:97–112CrossRefGoogle Scholar
  233. 233.
    Anjan KK (1988) Development and evaluation of a fixed dome plug flow anaerobic digester. Biomass 16:225–235CrossRefGoogle Scholar
  234. 234.
    Singh KJ, Sooch SS (2004) Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Convers Manag 45:1329–1341CrossRefGoogle Scholar
  235. 235.
    Babaee A, Shayegan J (2011) Effect of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetables waste. Bioenergy Technol 411–417Google Scholar
  236. 236.
    Sanders FA, Bloodgood DE (1965) The effect of nitrogen to carbon ratio on anaerobic decomposition. J Water Pollut Contamin Fed 37:1741–1749Google Scholar
  237. 237.
    Bachmann A et al (1985) Performance characteristics of the anaerobic baffled reactor. Water Res 19:99–106CrossRefGoogle Scholar
  238. 238.
    Foxon KM et al (2006) Evaluation of the anaerobic baffled reactor for sanitation in dense peri-urban settlements (WRC Report No 1248/01/06). Water Research Commission, Pretoria
  239. 239.
    Foxon KM et al (2004) The anaerobic baffled reactor (ABR) - an appropriate technology for on-site sanitation. Water SA 30:5Google Scholar
  240. 240.
    Morel A, Diener S (2006) Greywater management in low and middle-income countries. Review of different treatment systems for households or neighbourhoods (SANDEC Report No. 14/06). Swiss Federal Institute of Aquatic Science (EAWAG), Department of Water and Sanitation in Developing Countries (SANDEC), Duebendorf. Accessed 19 May 2010
  241. 241.
    Varilin VA et al (1994) Simulation model “Methane” as tool for effective biogas production during anaerobic conversion of complex organic matter. Bioresour Technol 48:1–8CrossRefGoogle Scholar
  242. 242.
    Reddy LV et al (2008) Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour Technol 99:2242–2249PubMedCrossRefGoogle Scholar
  243. 243.
    Zinatizadeh AAL et al (2006) Process modeling and analysis of palm oil mill effluent in an up flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Res 40:3193–3208PubMedCrossRefGoogle Scholar
  244. 244.
    Assi JA, King AJ (2008) Manganese amendment and Pleurotus ostreatus treatment to convert tomato pomace for inclusion in poultry feed. Poult Sci 87:1889–1896PubMedCrossRefGoogle Scholar
  245. 245.
    Mills PJ (1978) ADAS seminar report. Anaerobic digestion of farm wastes. MAFF, Coley Park, Reading, pp 43–49Google Scholar
  246. 246.
    Dohne EH (1980) In: Stafferd DA, Wheatley BI, Hughes DE (eds) Anaerobic digestion. Applied Science, London, pp 429–448Google Scholar
  247. 247.
    Ross CC, Drake TJ, Walsh JL (1996) Handbook of biogas utilization. 2nd edn. U.S. Department of Energy, Southeastern Regional Biomass Energy Program, July 1996Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations