Skip to main content

Ground Truth Data, Content, Metrics, and Analysis

  • Chapter
  • First Online:

Abstract

This chapter discusses several topics pertaining to ground truth data, the basis for computer vision metric analysis. We look at examples to illustrate the importance of ground truth data design and use, including manual and automated methods. We then propose a method and corresponding ground truth dataset for measuring interest point detector response as compared to human visual system response and human expectations. Also included here are example applications of the general robustness criteria and the general vision taxonomy developed in Chap. 5 as applied to the preparation of hypothetical ground truth data. Lastly, we look at the current state of the art, its best practices, and a survey of available ground truth datasets.

Buy the truth and do not sell it.

—Proverbs 23:23

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    See the “VLFeat” open-source project online (http://www.vlfeat.org).

References

  1. ?Bajcsy, R.: Computer description of textured surfaces. Int. Conf. Artif. Intell. Stat. (1973)

    Google Scholar 

  2. Bajcsy, R., Lieberman, L.: Texture gradient as a depth cue. Comput. Graph. Image Process. 5(1), (1976)

    Google Scholar 

  3. Cross, G.R., Jain, A.K.: Markov random field texture models. PAMI 54(1), (1983)

    Google Scholar 

  4. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ (2007)

    Google Scholar 

  5. Haralick, R.M.: Statistical and structural approaches to texture. Proc. Int. Joint Conf. Pattern Recogn. (1979)

    Google Scholar 

  6. Haralick, R.M., Shanmugan, R., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), (1973)

    Google Scholar 

  7. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theor. 8(2), (1962)

    Google Scholar 

  8. Lu, H.E., Fu, K.S.: A syntactic approach to texture analysis. Comput. Graph. Image Process. 7(3), (1978)

    Google Scholar 

  9. Pratt, W.K.: Digital image processing, 3rd edn. Wiley, Hoboken, NJ (2002)

    MATH  Google Scholar 

  10. Rosenfeld, A., Kak, A.C.: Digital picture processing, 2nd edn. Academic Press, New York (1982)

    MATH  Google Scholar 

  11. Tomita, F., Shirai, Y., Tsuji, S.: Description of texture by a structural analysis. Pattern. Anal. Mach. Intell. 4(2), (1982)

    Google Scholar 

  12. Wong, R.Y., Hall, E. L.: Scene matching with invariant moments. Comput. Graph. Image Process. 8 (1978)

    Google Scholar 

  13. Guoying, Z., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. Trans. Pattern. Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  14. Kellokumpu, V., Guoying Z., Pietikäinen, M.: Human activity recognition using a dynamic texture based method

    Google Scholar 

  15. Guoying, Z., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. Pattern. Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  16. Eichmann, G., Kasparis, T.: Topologically invariant texture descriptors. Comput. Vis. Graph. Image Process. 41(3), (1988)

    Google Scholar 

  17. Lam, S.W.C., Ip, H.H.S.: Structural texture segmentation using irregular pyramid. Pattern Recogn. Lett. 15(7), (1994)

    Google Scholar 

  18. Pietikäinen, M., Guoying, Z., Hadid, A.: Computer Vision Using Local Binary Patterns. Springer, New York (2011)

    Book  Google Scholar 

  19. Ojala, T., Pietikäinen, M., Hardwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. Proc. Int. Conf. Pattern. Recogn. (1994)

    Google Scholar 

  20. Ojala, T., Pietikäinen, M., Hardwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29 (1996)

    Google Scholar 

  21. Van Ginneken, B., Koenderink, J.J.: Texture histograms as a function of irradiation and viewing direction. Int. J. Comput. Vis. 31(2/3), 169–184 (1999)

    Article  Google Scholar 

  22. Stelu, A., Arati, K., Dong-Hui, X.: Texture analysis for computed tomography studies. Visual Computing Workshop DePaul University, (2004)

    Google Scholar 

  23. Krig, S.A.: Image texture analysis using spatial dependency matrices. Krig Research White Paper Series, (1994)

    Google Scholar 

  24. Laws, K.I.: Rapid texture identification. SPIE 238 (1980)

    Google Scholar 

  25. Bajcsy, R.K.: Computer identification of visual surfaces. Comput. Graph. Image Process. 2(2), 118–130 (1973)

    Article  Google Scholar 

  26. Kaizer, H.: A quantification of textures on aerial photographs. MS Thesis, Boston University, (1955)

    Google Scholar 

  27. Laws, K.I.: Texture energy measures. Proceedings of the Image Understanding Workshop, (1979)

    Google Scholar 

  28. Laws, K.I.: Rapid texture identification. SPIE 238 (1980)

    Google Scholar 

  29. Laws, K.I.: Textured image segmentation. PhD Thesis, University of Southern California, (1980)

    Google Scholar 

  30. Ade, F.: Characterization of textures by “Eigenfilters.” Signal Process. 5 (1983)

    Google Scholar 

  31. Davis, L.S.: Computing the spatial structures of cellular texture. Comput. Graph. Image Process. 11(2), (1979)

    Google Scholar 

  32. Eichmann, G., Kasparis, T.: Topologically invariant texture descriptors. Comput. Vis. Graph. Image Process. 41?(3), (1988)

    Google Scholar 

  33. Lam, S.W.C., Ip, H.H.S.: Structural texture segmentation using irregular pyramid. Pattern Recogn. Lett. 15(7), (1994)

    Google Scholar 

  34. Pietikäinen, M., Guoying, Z., Hadid, A.: Computer vision using local binary patterns. Springer, New York (2011)

    Book  Google Scholar 

  35. Ojala, T., Pietikäinen, M., Hardwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. Proc. Int. Conf. Pattern. Recogn. (1994)

    Google Scholar 

  36. Ojala T., Pietikäinen, M., Hardwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29 (1996)

    Google Scholar 

  37. Pun, C.M., Lee, M.C.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification. Trans. Pattern. Anal. Mach. Intell. 25(5), (2003)

    Google Scholar 

  38. Spence, A., Robb, M., Timmins, M., Chantler, M.: Real-time per-pixel rendering of textiles for virtual textile catalogues. Proceedings of INTEDEC, Edinburgh, (2003)

    Google Scholar 

  39. Lam, S.W.C., Horace, H.S.I.: Adaptive pyramid approach to texture segmentation. Comput. Anal. Images Patterns Lect. Notes Comput. Sci. 719, 267–274 (1993)

    Google Scholar 

  40. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and Texture of Real World Surfaces. Technical Report CUCS-048-96, Columbia University, (1996)

    Google Scholar 

  41. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. Conf. Comput. Vis. Pattern Recogn. (1997)

    Google Scholar 

  42. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. ACM Trans. Graph. (1999)

    Google Scholar 

  43. Suzuki, M.T., Yaginuma, Y.: A solid texture analysis based on three dimensional convolution kernels. Proc. SPIE 6491, (2007)

    Google Scholar 

  44. Suzuki, M.T., Yaginuma, Y., Yamada, T., Shimizu, Y.: A shape feature extraction method based on 3D convolution masks. Eighth IEEE International Symposium on Multimedia, ISM’06. (2006)

    Google Scholar 

  45. Guoying, Z., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. Trans. Pattern. Anal. Mach. Intell. 29 (2007)

    Google Scholar 

  46. Hadjidemetriou, E., Grossberg, M.D., Nayar, S.K.: Multiresolution histograms and their use for texture classification. IEEE PAMI 26

    Google Scholar 

  47. Hadjidemetriou, E., Grossberg, M.D., Nayar, S.K.: Multiresolution histograms and their use for recognition. IEEE PAMI 26(7), (2004)

    Google Scholar 

  48. Lee, K.L., Chen, L.H.: A new method for coarse classification of textures and class weight estimation for texture retrieval. Pattern Recogn. Image Anal. 12(4), (2002)

    Google Scholar 

  49. Van Ginneken, B., Koenderink, J.J.: Texture histograms as a function of irradiation and viewing direction. Int. J. Comput. Vis. 31(2/3), 169–184 (1999)

    Article  Google Scholar 

  50. Shu, L., Chung, A.C.S.: Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. ICASSP 2007. IEEE Int. Conf. Acoust. Speech Signal Process. (2007)

    Google Scholar 

  51. Stelu, A., Arati, K., Dong-Hui, X.:. Texture analysis for computed tomography studies. Visual Computing Workshop DePaul University, (2004)

    Google Scholar 

  52. Ade, F.: Characterization of textures by “Eigenfilters.” Signal Process. 5 (1983)

    Google Scholar 

  53. Rosin, P.L.: Measuring corner properties. Comput. Vis. Image Understand. 73(2)

    Google Scholar 

  54. Russel, B., Jianxiong, X., Torralba, A.: Localizing 3D cuboids in single-view images. Conf. Neural Inform. Process. Syst. (2012)

    Google Scholar 

  55. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. (SIGGRAPH Proc.) (2006)

    Google Scholar 

  56. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. (TBP)

    Google Scholar 

  57. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. Conf. Comput. Vis. Pattern Recogn. (2010)

    Google Scholar 

  58. Yunpeng, L., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. Eur. Conf. Comput. Vis. (2012)

    Google Scholar 

  59. Russell, B., Torralba, A., Murphy, K., Freeman, W.T.: LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 77 (2007).

    Google Scholar 

  60. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42 (2001)

    Google Scholar 

  61. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. Int. Conf. Robot Autom. (2011)

    Google Scholar 

  62. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. Conf. Comput. Vis. Pattern Recogn. (2010)

    Google Scholar 

  63. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Conf. Comput. Vis. Pattern Recogn. (2004)

    Google Scholar 

  64. Fei-Fei, L.: ImageNet: crowdsourcing, benchmarking & other cool things. CMU VASC Semin. (2010)

    Google Scholar 

  65. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. Conf. Comput. Vis. Pattern Recogn. (2012)

    Google Scholar 

  66. Quattoni, A., Torralba, A.: Recognizing indoor scenes. Conf. Comput. Vis. Pattern Recogn. (2009)

    Google Scholar 

  67. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. Int. Conf. Robot Autom. (2011)

    Google Scholar 

  68. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. Eur. Conf. Comput. Vis. (2012)

    Google Scholar 

  69. Xiaofeng R., Philipose, M.: Egocentric recognition of handled objects: benchmark and analysis. CVPR Workshops, (2009)

    Google Scholar 

  70. Xiaofeng, R., Gu, C.: Figure-ground segmentation improves handled object recognition in egocentric video. Conf. Comput. Vis. Pattern Recogn. (2009)

    Google Scholar 

  71. Fathi, A., Li, Y., Rehg, J.M.: Learning to recognize daily actions using gaze. Eur. Conf. Comput. Vis. (2012)

    Google Scholar 

  72. Dana, K.J., van Ginneken, B., Nayar, S.K. Koenderink, J. J.: Reflectance and texture of real world surfaces. Trans. Graph. 18(1), (1999)

    Google Scholar 

  73. Ce, L., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a Bayesian framework for material recognition. Conf. Comput. Vis. Pattern Recogn. (2010)

    Google Scholar 

  74. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical report 07-49, University of Massachusetts, Amherst, (2007)

    Google Scholar 

  75. Gross, R., Matthews, I., Cohn, J.F., Kanade, T., Baker, S.: Multi-PIE. Proceedings of the Eighth IEEE International Conference on Automatic Face and Gesture Recognition, (2008)

    Google Scholar 

  76. Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L.J., Fei-Fei, L.: Human action recognition by learning bases of action attributes and parts. Int. Conf. Comput. Vis. (2011)

    Google Scholar 

  77. LeCun, Y., Huang, FJ., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. Proc. Conf. Comput. Vis. Pattern Recogn. (2004)

    Google Scholar 

  78. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow. Comput. Vis. Image Understand. 84(1), (2001)

    Google Scholar 

  79. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. Conf. Comput. Vis. Pattern Recogn. Provid. Rhode Island. (2012)

    Google Scholar 

  80. Hamarneh, G., Jassi, P., Tang, L.: Simulation of ground-truth validation data via physically- and statistically-based warps. MICCAI 2008, the 11th International Conference on Medical Image Computing and Computer Assisted Intervention

    Google Scholar 

  81. Prastawa, M., Bullitt, E., Gerig, G.: Synthetic ground truth for validation of brain tumor MRI segmentation. MICCAI 2005, the 8th International Conference on Medical Image Computing and Computer Assisted Intervention

    Google Scholar 

  82. Vedaldi, A., Ling, H., Soatto, S.: Knowing a good feature when you see it: ground truth and methodology to evaluate local features for recognition. Comput. Vis. Stud. Comput. Intell. 285, 27–49 (2010)

    Google Scholar 

  83. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated ground truth. The Visual Computer 28 (2012)

    Google Scholar 

  84. Rosin, PL.: Augmenting corner descriptors. Graph. Model. Image Process. 58(3), (1996)

    Google Scholar 

  85. Rockett, P.I.: Performance assessment of feature detection algorithms: a methodology and case study on corner detectors. Trans. Image Process. 12(12), (2003)

    Google Scholar 

  86. Shahrokni, A., Ellis, A., Ferryman, J.: Overall evaluation of the PETS2009 results. IEEE PETS (2009)

    Google Scholar 

  87. Over, P., Awad, G., Sanders, G., Shaw, B., Martial, M., Fiscus, J., Kraaij, W., Smeaton, AF.: TRECVID 2013: An Overview of the Goals, Tasks, Data, Evaluation Mechanisms, and Metrics, NIST USA, (2013)

    Google Scholar 

  88. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. AI Memo 572, Massachusetts Institute of Technology, (1980)

    Google Scholar 

  89. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), (2010)

    Google Scholar 

  90. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos “in the Wild.” Conf. Comput. Vis. Pattern Recogn. (2009)

    Google Scholar 

  91. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. Trans. Pattern. Anal. Mach. Intell. 33(5), (2011)

    Google Scholar 

  92. Fisher, R.B.: PETS04 surveillance ground truth data set. Proc. IEEE PETS. (2004)

    Google Scholar 

  93. Quan Y., Thangali, A., Ablavsky, V., Sclaroff, S.: Learning a family of detectors via multiplicative kernels. Pattern. Anal. Mach. Intell. 33(3), (2011)

    Google Scholar 

  94. Ericsson, A., Karlsson, J.: Measures for benchmarking of automatic correspondence algorithms. J. Math. Imaging Vis. (2007)

    Google Scholar 

  95. Takhar, D., et al.: A new compressive imaging camera architecture using optical-domain compression. In: Proceedings of IS&T/SPIE Symposium on Electronic Imaging (2006)

    Google Scholar 

  96. Marco, F.D., Baraniuk, R.G.: Kronecker compressive sensing. IEEE Trans. Image Process. 21(2), (2012)

    Google Scholar 

  97. Weinzaepfel, P., Jegou, H., Perez, P.: Reconstructing an image from its local descriptors. Conf. Comput. Vis. Pattern Recogn. (2011)

    Google Scholar 

  98. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Conf. Comput. Vis. Pattern Recogn. (2005)

    Google Scholar 

  99. ?Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2007)

    Article  Google Scholar 

  100. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  101. Fischler, M.A., Bolles, RC.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), (1981)

    Google Scholar 

  102. Sunglok, C., Kim, T., Yu, W.: Performance evaluation of RANSAC family. Br. Mach. Vis. Assoc. (2009)

    Google Scholar 

  103. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-means clustering algorithm. J. Royal Stat. Soc. Ser. C Appl. Stat. 28(1), 100–108 (1979)

    MATH  Google Scholar 

  104. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133 (1908)

    Google Scholar 

  105. Capel, D.: Random forests and ferns. Penn. State University Computer Vision Laboratory, seminar lecture notes online:. ForestsAndFernsTalk.pdf.

    Google Scholar 

  106. Xiaofeng, R., Malik, J.: Learning a classification model for segmentation

    Google Scholar 

  107. Lai, K., Bo, L., Ren, X., Fox, D.: Sparse distance learning for object recognition combining RGB and depth information

    Google Scholar 

  108. Xiaofeng, R., Ramanan, D.: Histograms of sparse codes for object detection. Conf. Comput. Vis. Pattern Recogn. (2013)

    Google Scholar 

  109. Liefeng, B., Ren, X., Fox, D.: Multipath sparse coding using hierarchical matching pursuit. Conf. Comput. Vis. Pattern Recogn. (2013)

    Google Scholar 

  110. Herbst, E., Ren, X., Fox, D.: RGB-D flow: dense 3-D motion estimation using color and depth. IEEE Int. Conf. Robot Autom. (ICRA) (2013)

    Google Scholar 

  111. Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection. Conf. Neural Inform. Process. Syst. (2012)

    Google Scholar 

  112. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. ICCV ’11 Proceedings of the 2011 International Conference on Computer Vision

    Google Scholar 

  113. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital images. Pattern Recog. 1, 33–61 (1968)

    Article  Google Scholar 

  114. Richardson, A., Olson, E.: Learning convolutional filters for interest point detection. IEEE Int. Conf. Robot Autom. ICRA’13 IEEE, 631–637, (2013)

    Google Scholar 

  115. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Englewood Cliffs, NJ (1999)

    Google Scholar 

  116. Liefeng, B, Ren, X., Fox, D.: Multipath sparse coding using hierarchical matching pursuit. Conf. Comput. Vis. Pattern Recogn. (2013)

    Google Scholar 

  117. Ren, X., Ramanan, D.: Histograms of sparse codes for object detection. Conf. Comput. Vis. Pattern Recogn. (2013)

    Google Scholar 

  118. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  119. d’Angelo, E., Alahi, A., Vandergheynst, P.: Beyond bits: reconstructing images from local binary descriptors. Swiss Federal Institute of Technology, 21st International Conference on Pattern Recognition (ICPR), (2012)

    Google Scholar 

  120. Dengsheng, Z., Lu, G.: Review of shape representation and description techniques. J. Pattern Recogn. Soc. 37, 1–19 (2004)

    Article  Google Scholar 

  121. Yang M., Kidiyo, K., Joseph, R.: A survey of shape feature extraction techniques. Pattern Recogn. 43–90, (2008)

    Google Scholar 

  122. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. Conf. Comput. Vis. Pattern Recogn. (2012)

    Google Scholar 

  123. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. Int. Conf. Comput. Vis. (2011)

    Google Scholar 

  124. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. ECCV’10 Proceedings of the 11th European Conference Computer Vision: Part IV, (2010)

    Google Scholar 

  125. Calonder, M., et al.: BRIEF: computing a local binary descriptor very fast. Pattern. Anal. Mach. Intell. 34 (2012)

    Google Scholar 

  126. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. ICCV ’11 Proceedings of the 2011 International Conference on Computer Vision, (2011)

    Google Scholar 

  127. von Hundelshausen, F., Sukthankar, R.: D-Nets: beyond patch-based image descriptors. Conf. Comput. Vis. Pattern Recogn. (2012)

    Google Scholar 

  128. Krig, S.: RFAN radial fan descriptors. Picture Center Imaging and Visualization System, White Paper Series (1992)

    Google Scholar 

  129. Krig, S.: Picture Center Imaging and Visualization System. Krig Research White Paper Series (1994)

    Google Scholar 

  130. Rosten, E., Drummond, T.: FAST machine learning for high-speed corner detection. Eur. Conf. Comput. Vis. (2006)

    Google Scholar 

  131. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. Int. Conf. Comput. Vis. (2005)

    Google Scholar 

  132. Liefeng, B., Ren, X., Fox, D.: Hierarchical matching pursuit for image classification: architecture and fast algorithms. Conf. Neural Inform. Process. Syst. (2011)

    Google Scholar 

  133. Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching. Int. Conf. Pattern. Recogn. (2012)

    Google Scholar 

  134. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  135. Gleason, J.: BRISK (Presentation by Josh Gleason) at International Conference on Computer Vision, (2011)

    Google Scholar 

  136. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Pattern. Anal. Mach. Intell. IEEE Trans. 27(10), (2005)

    Google Scholar 

  137. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94(3), (2011)

    Google Scholar 

  138. Viola, Jones. Robust real time face detection. Int. J. Comput. Vis. 57(2), (2004)

    Google Scholar 

  139. Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7(1), (1998)

    Google Scholar 

  140. Qi, T., Huhns, M.N.: Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 35 (1986)

    Google Scholar 

  141. Zhu, J., Yang, L.: Subpixel eye gaze tracking. Autom. Face Gesture Recogn. Conf. (2002)

    Google Scholar 

  142. Cheezum, M.K., Walker, W.F., Guilford, W.H.: Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81(4), 2378–2388 (2001)

    Article  Google Scholar 

  143. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156–158 (2008)

    Article  Google Scholar 

  144. Hadjidemetriou, E., Grossberg, M.D., Nayar, S.K.: Multiresolution histograms and their use for texture classification. Int. Workshop Texture Anal. Synth. 26(7), (2003)

    Google Scholar 

  145. Mikolajczyk, K., et al.: A comparison of affine region detectors. Conf. Comput. Vis. Pattern Recogn. (2006)

    Google Scholar 

  146. Canny, A.: Computational approach to edge detection. Trans. Pattern. Anal. Mach. Intell. 8(6), (1986)

    Google Scholar 

  147. Gunn, S.R.: Edge detection error in the discrete Laplacian of Gaussian. International Conference on Image Processing, ICIP 98. Proceedings. vol 2, (1998)

    Google Scholar 

  148. Harris, C., Stephens, M.: A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, (1988)

    Google Scholar 

  149. Shi, J., Tomasi, C.: Good features to track. Conf. Comput. Vis. Pattern Recogn. (1994)

    Google Scholar 

  150. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 1991 © MIT Media Lab, (1991)

    Google Scholar 

  151. Haja, A., Jahne, B., Abraham, S.: Localization accuracy of region detectors. IEEE CVPR (2008)

    Google Scholar 

  152. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Understand. 110(3), 346–359 (2008)

    Article  Google Scholar 

  153. Lowe, D.G.: SIFT distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  154. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. Eur. Conf. Comput. Vis. (2004)

    Google Scholar 

  155. Kadir, T., Brady, J.M.: Scale, saliency and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  156. Smith, S.M., Michael Brady, J.: SUSAN—a new approach to low level image processing. Technical report TR95SMS1c (patented), Crown Copyright (1995), Defence Research Agency, UK, (1995)

    Google Scholar 

  157. Smith, S.M., Michael Brady, J.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. Arch. 23(1), 45–78 (1997)

    Article  Google Scholar 

  158. Baohua, Y., Cao, H., Chu, J.: Combining local binary pattern and local phase quantization for face recognition. Int. Symp. Biometr. Secur. Technol. (2012)

    Google Scholar 

  159. Ojansivu, V., Heikkil, J.: Blur insensitive texture classification using local phase quantization. Proc. Image Signal Process. (2008)

    Google Scholar 

  160. Chan, C.H., Tahir, M.A., Kittler, J., Pietikäinen, M.: Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. PAMI (2012)

    Google Scholar 

  161. Ojala, T., Pietikäinen, M., Hardwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. Proc. Int. Conf. Pattern. Recogn. (1994)

    Google Scholar 

  162. Ojala, T., Pietikäinen, M., Hardwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29 (1996)

    Google Scholar 

  163. Pietikäinen, M., Heikkilä, J.: Tutorial on image and video description with local binary pattern variants. Conf. Comput. Vis. Pattern Recogn. (2011)

    Google Scholar 

  164. Shu, L., Albert, C.S.: Chung. Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. IEEE Int. Conf. Acoust. Speech Signal Process. ICASSP, (2007)

    Google Scholar 

  165. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Binary Patterns. Computational Imaging and Vision Series, vol. 40. Springer, New York (2011)

    Book  Google Scholar 

  166. Arandjelovi, A., Zisserman, A.: Three things everyone should know to improve object retrieval. Conf. Comput. Vis. Pattern Recogn. (2011)

    Google Scholar 

  167. Guoying Z., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. Pattern. Anal. Mach. Intell. IEEE Trans. 29(6), (2007)

    Google Scholar 

  168. Kellokumpu, V., Guoying Z., Pietikäinen, M.: Human activity recognition using a dynamic texture based method. Br. Mach. Vis. Conf. (2008)

    Google Scholar 

  169. Zabih, R., Woodfill, J.: Nonparametric local transforms for computing visual correspondence. Eur. Conf. Comput. Vis. (1994)

    Google Scholar 

  170. Lowe, D.G.: Object recognition from local scale-invariant features. The Proceedings of the Seventh IEEE International Conference on Computer Vision, (1999)

    Google Scholar 

  171. Abdel-Hakim, A.E., Farag, A.A.: CSIFT: a SIFT descriptor with color invariant characteristics. Conf. Comput. Vis. Pattern Recogn. (2006)

    Google Scholar 

  172. Vinukonda, P.: A study of the scale-invariant feature transform on a parallel pipeline. Thesis Project

    Google Scholar 

  173. Alcantarilla, P.F., Bergasa, L.M., Davison, A.: Gauge-SURF Descriptors. Elsevier, (2011)

    Google Scholar 

  174. Christopher, E.: Notes on the OpenSURF Library, University of Bristol Technical Paper, (2009)

    Google Scholar 

  175. Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. Conf. Comput. Vis. Pattern Recogn. (2004)

    Google Scholar 

  176. Gauglitz, S., Höllerer, T., Turka, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vis. 94 (2011)

    Google Scholar 

  177. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  178. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2002)

    Article  Google Scholar 

  179. Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on Gabor filters. IEEE Trans. Image Process. 11(10), (2002)

    Google Scholar 

  180. Alcantarilla, P., Bergasa, L.M., Davison, A.: Gauge-SURF descriptors. Image Vis. Comput. 31(1), 103–116 (2013). Elsevier via DOI 1302

    Article  Google Scholar 

  181. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  182. Morse, B.S.: Lecture 11: Differential Geometry. Brigham Young University, (1998/2000). http://morse.cs.byu.edu/650/lectures/lect10/diffgeom.pdf

  183. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. CIVR ’07 Proceedings of the 6th ACM International Conference on Image and Video Retrieval

    Google Scholar 

  184. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  185. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. (2001)

    Google Scholar 

  186. Matas, J., Chum, O., Urba, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. Proc. Br. Mach. Vis. Conf. (2002)

    Google Scholar 

  187. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. ACM Proceedings of the 15th International Conference on Multimedia, pp. 357–360, (2007)

    Google Scholar 

  188. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. Br. Mach. Vis. Conf. (2008)

    Google Scholar 

  189. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64 (2005)

    Google Scholar 

  190. Oreifej, O., Liu, Z.: HON4D: histogram of oriented 4D normals for activity recognition from depth sequences. Conf. Comput. Vis. Pattern Recogn. (2013)

    Google Scholar 

  191. Ke, Y., et al.: Efficient visual event detection using volumetric features. Int. Conf. Comput. Vis. (2005)

    Google Scholar 

  192. Zhang, L., da Fonseca, M.J., Ferreira, A.: Survey on 3D shape descriptors. União Europeia—Fundos Estruturais Governo da República Portuguesa Referência: POSC/EIA/59938/2004

    Google Scholar 

  193. Tangelder, J.W.H., Veltkamp, R.C.: A Survey of Contrent-Based 3D Shape Retrieval Methods. Springer, New York (2007)

    Google Scholar 

  194. Heikkila, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. Comput. Vis. Graph. Image Process. Lect. Notes Comput. Sci. 4338, 58–69 (2006)

    MATH  Google Scholar 

  195. Schmidt, A., Kraft, M., Fularz, M., Domagała, Z.: The comparison of point feature detectors and descriptors in the context of robot navigation. Workshop on Perception for Mobile Robots Autonomy, (2012)

    Google Scholar 

  196. Jun, B., Kim, D.: Robust face detection using local gradient patterns and evidence accumulation. Pattern Recogn. 45(9), 3304–3316 (2012)

    Article  Google Scholar 

  197. Froba, B., Ernst, A.: Face detection with the modified census transform. Int. Conf. Autom. Face Gesture Recogn. (2004)

    Google Scholar 

  198. Freeman, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. (1961)

    Google Scholar 

  199. Salem, A.B.M., Sewisy, A.A., Elyan, U.A.: A vertex chain code approach for image recognition. Int. J. Graph. Vis. Image Process. ICGST-GVIP, (2005)

    Google Scholar 

  200. Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recogn. Lett. 1 (1992)

    Google Scholar 

  201. Koenderink, J., Richards, W.: Two-dimensional curvature operators. J. Opt. Soc. Am. 5(7), 1136–1141 (1988)

    Article  MathSciNet  Google Scholar 

  202. Bretzner, L., Lindeberg, T.: Feature tracking with automatic selection of spatial scales. Comput. Vis. Image Understand. 71(3), 385–392 (1998)

    Article  Google Scholar 

  203. Lindeberg, T.: Junction detection with automatic selection of detection scales and localization scales. Proceedings of First International Conference on Image Processing, (1994)

    Google Scholar 

  204. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  205. Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image Vis. Comput. 13(9), 695–703 (1995)

    Article  Google Scholar 

  206. Trajkovic, M., Hedley, M.: Fast corner detection. Image Vis. Comput. 16(2), 75–87 (1998)

    Article  Google Scholar 

  207. Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. PAMI 32(5), (2010)

    Google Scholar 

  208. Arbeiter, G., et al.: Evaluation of 3D feature descriptors for classification of surface geometries in point clouds. Int. Conf. Intell. Robots Syst. (2012) IEEE/RSJ

    Google Scholar 

  209. Rupell, A., Weisshardt, F., Verl, A.: A rotation invariant feature descriptor O-DAISY and its FPGA implementation. IROS (2011)

    Google Scholar 

  210. Ambai, M., Yoshida, Y.: CARD: compact and real-time descriptors. Int. Conf. Comput. Vis. (2011)

    Google Scholar 

  211. Takacs, G., et al.: Unified real-time tracking and recognition with rotation-invariant fast features. Conf. Comput. Vis. Pattern Recogn. (2010)

    Google Scholar 

  212. Taylor, S., Rosten, E., Drummond, T.: Robust feature matching in 2.3 μs. Conf. Comput. Vis. Pattern Recogn. (2009)

    Google Scholar 

  213. Grauman, K., Darrell, T.: The pyramid Match Kernel: discriminative classification with sets of image features. IEEE Int. Conf. Comput. Vis. Tenth 2, (2005)

    Google Scholar 

  214. Takacs, G., et al.: Unified real-time tracking and recognition with rotation-invariant fast features. Conf. Comput. Vis. Pattern Recogn. (2010)

    Google Scholar 

  215. Chandrasekhar, V., et al.: CHoG: compressed histogram of gradients, a low bitrate descriptor. Conf. Comput. Vis. Pattern Recogn. (2009)

    Google Scholar 

  216. Mainali, G.L., et al.: SIFER: scale-invariant feature detector with error resilience. Int. J. Comput. Vis. (2013)

    Google Scholar 

  217. Fowers, S.G., Lee, D.J., Ventura, D., Wilde, D.K.: A novel, efficient, tree-based descriptor and matching algorithm (BASIS). Conf. Comput. Vis. Pattern Recogn. (2012)

    Google Scholar 

  218. Fowers, S.G., Lee, D.J., Ventura, D.A., Archibald, J. K.: Nature inspired BASIS feature descriptor and its hardware implementation. IEEE Trans. Circ. Syst. Video Technol. (2012)

    Google Scholar 

  219. Bracewell, R.: The Fourier Transform & Its Applications, 3 ed., McGraw-Hill Science/Engineering/Math, (1999)

    Google Scholar 

  220. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM. (1972)

    Google Scholar 

  221. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), (1981)

    Google Scholar 

  222. Illingsworth, J., Kitter, K.: A survey of the Hough transform. Comput. Vis Graph. Image Process. (1988)

    Google Scholar 

  223. Slaton, G., MacGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    Google Scholar 

  224. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. (2008)

    Google Scholar 

  225. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. Eur. Conf. Comput. Vis. (2006)

    Google Scholar 

  226. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of key-points. SLCV workshop, Eur. Conf. Comput. Vis. (2004)

    Google Scholar 

  227. Dean, T., Washington, R., Corrado, G.: Sparse spatiotemporal coding for activity recognition. Brown Univ. Tech. Rep. (2010)

    Google Scholar 

  228. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. Conf. Comput. Vis. Pattern Recogn. (2011)

    Google Scholar 

  229. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  230. Belongie, S., Malik, J., Puzicha, J.: Matching with shape context. CBAIVL ’00 Proceedings of the IEEE Workshop on Content-based Access of Image and Video Libraries

    Google Scholar 

  231. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. Conf. Neural Inform. Process. Syst. (2000)

    Google Scholar 

  232. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), (2002)

    Google Scholar 

  233. Belongie, S., Malik, J., Puzich, J.: Matching shapes with shape context. CBAIVL ’00 Proceedings of the IEEE Workshop on Content-based Access of Image and Video Libraries

    Google Scholar 

  234. Liefeng, B., Ren, X., Fox, D.: Unsupervised feature learning for RGB-D based object recognition. ISER, vol 88 of Springer Tracts in Advanced Robotics. Springer, pp. 387–402, (2012)

    Google Scholar 

  235. Loy, G., Zelinsky, A.: A fast radial symmetry transform for detecting points of interest. Eur. Conf. Comput. Vis. (2002)

    Google Scholar 

  236. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  237. Kurz, D., Ben Himane, S.: Inertial sensor-aligned visual feature descriptors. Conf. Comput. Vis. Pattern Recogn. (2011)

    Google Scholar 

  238. Kingsbury, N.: Rotation-invariant local feature matching with complex wavelets. Proc. Eur. Conf. Signal Process. (EUSIPCO), (2006)

    Google Scholar 

  239. Dinggang, S., Ip, H.H.S.: Discriminative wavelet shape descriptors for recognition of 2-D patterns. Pattern Recogn. 32(2), 151–165 (1999)

    Article  Google Scholar 

  240. Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition. Conf. Neural Inform. Process. Syst. (1997)

    Google Scholar 

  241. Hunt, R.W.G., Pointer, M.R.: Measuring Colour. Wiley, Hoboken, NJ (2011)

    Book  Google Scholar 

  242. Hunt, R.W.G.: The reproduction of color, 6 ed., Wiley, (2004)

    Google Scholar 

  243. Berns, R.S.: Billmeyer and Saltzman’s Principles of Color Technology. Wiley, Hoboken, NJ (2000)

    Google Scholar 

  244. Morovic, J.: Color Gamut Mapping. Wiley, Hoboken, NJ (2008)

    Book  Google Scholar 

  245. Fairchild, M.: Color appearance models. 1st ed., Addison Wesley Longman, (1998)

    Google Scholar 

  246. Ito, M., Tsubai, M., Nomura, A.: Morphological operations by locally variable structuring elements and their applications to region extraction in ultrasound images. Syst. Comput. Jpn. 34(3), 33–43 (2003)

    Article  Google Scholar 

  247. Tsubai, M., Ito, M.: Control of variable structure elements in adaptive mathematical morphology for boundary enhancement of ultrasound images. Electron. Commun. Jpn. Part 3 Fund. Electron. Sci. 87(11), 20–33

    Google Scholar 

  248. Mazille, J.E.: Mathematical morphology and convolutions. J. Microsc. 156, 257 (1989)

    Article  Google Scholar 

  249. Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. PAMI 34(11), (2012)

    Google Scholar 

  250. Achanta, R., et al.: SLIC superpixels. EPFL technical report no. 149300, (2010)

    Google Scholar 

  251. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. (2004)

    Google Scholar 

  252. Levinshtein, A., et al.: Turbopixels: fast superpixels using geometric flows. PAMI (2009)

    Google Scholar 

  253. Lucchi, A., et al.: A fully automated approach to segmentation of irregularly shaped cellular structures in EM images. MICCAI (2010)

    Google Scholar 

  254. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI (2000)

    Google Scholar 

  255. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  256. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  257. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59 (2004)

    Google Scholar 

  258. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. PAMI 24(5), (2002)

    Google Scholar 

  259. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  260. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. PAMI 13(6), (1991)

    Google Scholar 

  261. Levinshtein, A., et al.: Turbopixels: fast superpixels using geometric flows. PAMI 31(12), (2009)

    Google Scholar 

  262. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. Conf. Comput. Vis. Pattern Recogn. (2007)

    Google Scholar 

  263. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. Conf. Comput. Vis. Pattern Recogn. (2007)

    Google Scholar 

  264. Goodman, J.W.: Introduction to Fourier optics. McGraw-Hill, New York (1968)

    Google Scholar 

  265. Gaskill, J.D.: Linear Systems, Fourier Transforms, Optics. Wiley, Hoboken, NJ (1978)

    Google Scholar 

  266. Thibos, L., Applegate, R.A., Schweigerling, J.T., Webb, R.: Standards for reporting the optical aberrations of eyes. In: Lakshminarayanan, V. (ed.) OSA Trends in Optics and Photonics, Vision Science and its Applications. Optical Society of America, Washington, DC (2000)

    Google Scholar 

  267. Hwang, S.-K., Kim, W.-Y.: A novel approach to the fast computation of Zernike moments. Pattern Recogn. 39 (2006)

    Google Scholar 

  268. Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. PAMI 12 (1990)

    Google Scholar 

  269. Chao Kan, M., Srinath, D.: Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recogn. 35, (2002)

    Google Scholar 

  270. Hyung, S.K., Lee, H.-K.: Invariant image watermark using Zernike moments. IEEE Trans. Circ. Syst. Video Technol. 13(8), (2003)

    Google Scholar 

  271. Papakostas, G.A., Karras, D.A., Mertzios, B.G.: Image coding using a wavelet based Zernike moments compression technique. In: Proceeding of: Digital Signal Processing, vol 2, DSP, (2002)

    Google Scholar 

  272. Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. 28(9), 1433–1442, (1995)

    Google Scholar 

  273. Yongqing, X., Pawlak, M., Liao, S.: Image reconstruction with polar Zernike moments. ICAPR’05 Proceedings of the Third International Conference on Pattern Recognition and Image Analysis—Volume Part II (2005)

    Google Scholar 

  274. Singh, C., Upneja, R.: Fast and accurate method for high order Zernike moments computation. Appl. Math. Comput. 218(15), 7759–7773 (2012)

    MathSciNet  MATH  Google Scholar 

  275. Pratt, W., Chen, W.-H., Welch, L.: Slant transform image coding. IEEE Trans. Commun. 22(8), (1974)

    Google Scholar 

  276. Enomoto, H., Shibata, K.: Orthogonal transform coding system for television signals. IEEE Trans. Electromagn. Compatibil. 13(3), (1974)

    Google Scholar 

  277. Dutra da Silva, R., Robson, W., Pedrini Schwartz, H.: Image segmentation based on wavelet feature descriptor and dimensionality reduction applied to remote sensing. Chilean J. Stat. 2 (2011)

    Google Scholar 

  278. Arun, N., Kumar, M., Sathidevi, P.S.: Wavelet SIFT feature descriptors for robust face recognition. Springer Adv. Intell. Syst. Comput. 177 (2013)

    Google Scholar 

  279. Dinggang, S., Ip, H.H.S.: Discriminative wavelet shape descriptors for recognition of 2-D patterns. Pattern Recogn. 32 (1999)

    Google Scholar 

  280. Kingsbury, N.: Rotation-invariant local feature matching with complex wavelets. Proc. Eur. Conf. Signal Process. EUSIPCO (2006)

    Google Scholar 

  281. Wolfram Research Mathematica Wavelet Analysis Libraries

    Google Scholar 

  282. Strang, G.: “Wavelets.” Am. Sci. 82(3), (1994)

    Google Scholar 

  283. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed., Elsevier, (2008)

    Google Scholar 

  284. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  285. Gabor, D.: Theory of communication. J. IEE. 93 (1946)

    Google Scholar 

  286. Minor, L.G., Sklansky, J.: Detection and segmentation of blobs in infrared images. IEEE Trans. Syst. Man Cyberneteics. 11(3), (1981)

    Google Scholar 

  287. van Ginkel, M., Luengo Hendriks, C.K., van Vliet, L. J.: A short introduction to the Radon and Hough transforms and how they relate to each other. Number QI-2004-01 in the Quantitative Imageing Group Technical Report Series (2004)

    Google Scholar 

  288. Toft, P.A.: Using the generalized Radon transform for detection of curves in noisy images. 1996 I.E. International Conference on Acoustics, Speech, and Signal Processing, ICASSP-96. Conference Proceedings, vol 4, (1996)

    Google Scholar 

  289. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften, Leipzig, Mathematisch-Physikalische Klasse 69 (1917)

    Google Scholar 

  290. Fung, J., Mann, S., Aimone, C.: OpenVIDIA: parallel GPU computer vision. Proc. ACM Multimed. (2005)

    Google Scholar 

  291. Bazin, M.J., Benoit, J.W.: Off-line global approach to pattern recognition for bubble chamber pictures. Trans. Nuclear Sci. 12 (1965)

    Google Scholar 

  292. Deans, S.R.: Hough transform from the Radon transform. Trans. Pattern. Anal. Mach. Intell. 3(2), 185–188 (1981)

    Article  Google Scholar 

  293. Rosenfeld, A.: Digial Picture Processing by Computer. Academic Press, New York (1982)

    Google Scholar 

  294. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. ICCV ’98 Proceedings of the Sixth International Conference on Computer Vision (1998)

    Google Scholar 

  295. See the documentation for the ImageJ, ImageJ2 or Fiji software package for complete references to each method, [global] Auto Threshold command and Auto Local Threshold command. http://fiji.sc/ImageJ2

  296. Garg, R., Mittal, B., Garg, S.: Histogram equalization techniques for image enhancement. Int. J. Electron. Commun. Technol. 2 (2011)

    Google Scholar 

  297. Sung, A.P., Wang, C.: Spatial-temporal antialiasing. Trans. Visual. Comput. Graph. 8 (2002)

    Google Scholar 

  298. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60 (2004)

    Google Scholar 

  299. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. PAMI 32 (2010)

    Google Scholar 

  300. Schaffalitzky, F., Zisserman, A.: Automated scene matching in movies. CIVR 2004, In: Proceedings of the Challenge of Image and Video Retrieval, London, LNCS 2383

    Google Scholar 

  301. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. Conf. Comput. Vis. Pattern Recogn. (2008)

    Google Scholar 

  302. Davis, L.S.: Computing the spatial structures of cellular texture. Comput. Graph. Image Process. 11(2), (1979)

    Google Scholar 

  303. Pun, C.M., Lee, M.C.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification. Trans. Pattern. Anal. Mach. Intell. 25(5), (2003)

    Google Scholar 

  304. Spence, A., Robb, M., Timmins, M., Chantler, M.: Real-time per-pixel rendering of textiles for virtual textile catalogues. Proc. INTEDEC. (2003)

    Google Scholar 

  305. Lam, S.W.C., Ip, H.H.S.: Adaptive pyramid approach to texture segmentation. Comput. Anal. Images Patterns Lect. Notes Comput. Sci. 719, 267–274 (1993)

    Google Scholar 

  306. Yinpeng J., Fayad, L., Laine, A.: Contrast enhancement by multi-scale adaptive histogram equalization. Proc. SPIE. 4478 (2001)

    Google Scholar 

  307. Jianguo, Z., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recogn. 35 (2002)

    Google Scholar 

  308. Tomita, F., Shirai, Y., Tsuji, S.: Description of textures by a structural analysis. IEEE Trans. Pattern. Anal. Mach. Intell. Arch. 4 (1982)

    Google Scholar 

  309. Tomita, F., Tsuji, S.: Computer Analysis of Visual Textures. Springer, New York (1990)

    Book  MATH  Google Scholar 

  310. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. (1983)

    Google Scholar 

  311. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  312. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. SPIE J. Electron. Imaging (2004)

    Google Scholar 

  313. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29, 100–132 (1985)

    Article  Google Scholar 

  314. Raja, Y., Gong, S.: Sparse multiscale local binary patterns. Br. Mach. Vis. Conf. (2006)

    Google Scholar 

  315. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5 (2004)

    Google Scholar 

  316. Szelinski, R.: Computer Vision, Algorithms and Applications. Springer, New York (2011)

    Google Scholar 

  317. Pratt, W.K.: Digital Image Processing: PIKS Scientific Inside. 4 ed., Wiley-Interscience, (2007)

    Google Scholar 

  318. Russ, J.C.: The Image Processing Handbook, 5 ed., CRC Press, (2006)

    Google Scholar 

  319. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. IMAR. (2007)

    Google Scholar 

  320. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. ISMAR ’11 Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality (2011)

    Google Scholar 

  321. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. ACM Symp. User Interf. Software Technol. (2011)

    Google Scholar 

  322. Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Tech Report CMU-RI-TR-3, Robotics Institute, Carnegie-Mellon University, (1980)

    Google Scholar 

  323. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. Int. Conf. Comput. Vis. (2001)

    Google Scholar 

  324. Turcot, P., Lowe, D.G.: Better matching with fewer features: the selection of useful features in large database recognition problems. Int. Conf. Comput. Vis. (2009)

    Google Scholar 

  325. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms, 1997 ed., Birkhäuser, (1997)

    Google Scholar 

  326. Ricker, N.: Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics 18, 769–792 (1953)

    Article  Google Scholar 

  327. Goshtasby, A.: Description and discrimination of planar shapes using shape matrices. PAMI 7(6), (1985)

    Google Scholar 

  328. Vapnik, V.N., Levin, E., LeCun, Y.: Measuring the dimension of a learning machine. Neural Comput. 6(5), 851–876 (1994)

    Article  Google Scholar 

  329. Cowan, J. D., Tesauro, G., Alspector, J.: Learning curves: asymptotic values and rate of convergence. Adv. Neural Inform. Process. 6 (1994)

    Google Scholar 

  330. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  331. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition: intelligent signal processing. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  332. Krizhevsky, A., Sutskever, I., Hinton, E.: ImageNet classification with deep convolutional neural networks. Conf. Neural Inform. Process. Syst. (2012)

    Google Scholar 

  333. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. COLT ’92 Proceedings of the Fifth Annual Workshop on Computational Learning Theory, (1992)

    Google Scholar 

  334. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20 (1995)

    Google Scholar 

  335. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Kluwer Data Mining Discov. 2 (1998)

    Google Scholar 

  336. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. Int. Conf. Comput. Vis. (2013)

    Google Scholar 

  337. Keysers, T.C., Gollan, D., Ney, H.: Deformation models for image recognition. Trans. PAMI 20 (2007)

    Google Scholar 

  338. Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. Conf. Comput. Vis. Pattern Recogn. (2013)

    Google Scholar 

  339. Boureau, Y.-L., Ponce, J., LeCu, Y.: A theoretical analysis of feature pooling in visual recognition. IML, 27th International Conference on Machine Learning, Haifa, Israel, (2010)

    Google Scholar 

  340. Schmid, C., Mohr, R.: Object recognition using local characterization and semi-local constraints. PAMI 19(3), (1997)

    Google Scholar 

  341. Ferrari, V., Tuytelaars, T., Gool, L.V.: Simultaneous object recognition and segmentation from single or multiple model views. Int. J. Comput. Vis. 67 (2005)

    Google Scholar 

  342. Schaffalitzky, F., Zisserman, A.: Automated scene matching in movies. CIVR. (2002)

    Google Scholar 

  343. Estivill-Castro, V.: Why so many clustering algorithms—a position paper. ACM SIGKDD Explor. Newslett. 4(1), (2002)

    Google Scholar 

  344. Kriegel, H.-P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisciplinary Rev. Data Mining Knowl. Discov. 1(3), 231–240 (2011)

    Article  Google Scholar 

  345. Hartigan, J.A.: Clustering Algorithms. Wiley, Hoboken, NJ (1975)

    MATH  Google Scholar 

  346. Hartigan, J.A., Wong. M.A.: Algorithm AS 136: A K-means clustering algorithm. J. Roy. Stat. Soc. 28(1), (1979)

    Google Scholar 

  347. Hastie, T., Tibshirani, R., Friedman, J.: Hierarchical Clustering: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  348. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  349. Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. (1901)

    Google Scholar 

  350. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3–4), 321–377 (1936)

    Article  MATH  Google Scholar 

  351. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  352. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (1999)

    MATH  Google Scholar 

  353. Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken, NJ (1998)

    MATH  Google Scholar 

  354. Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1031 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  355. Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  356. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. Conf. Neural Inform. Process. Syst. (2004)

    Google Scholar 

  357. Schmid, C., Mohr, R.: Local gray value invariants for image retrieval. PAMI 19(5), (1997)

    Google Scholar 

  358. Dork, G., Schmid, C.: Object class recognition using discriminative local features. Technical Report RR-5497, INRIA—Rhone-Alpes (2005)

    Google Scholar 

  359. Schlkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA (2001)

    Google Scholar 

  360. Ferrari, V., Tuytelaars, T., Gool, L.V.: Simultaneous object recognition and segmentation from single or multiple model views. Int. J. Comput. Vis. 67(2), (2006)

    Google Scholar 

  361. Cinbis, R.G., Verbeek, J., Schmid, C.: Segmentation driven object detection with fisher vectors. Int. Conf. Comput. Vis. (2013)

    Google Scholar 

  362. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), (1981)

    Google Scholar 

  363. Freund, Y., Schapire, R.E.: A short introduction to boosting. Jpn. Soc. Artif. Intell. 14(5), (1999)

    Google Scholar 

  364. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  365. Heckerman, D.: A tutorial on learning with Bayesian networks. Microsoft Res. Tech. Rep. (1996)

    Google Scholar 

  366. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), (1997)

    Google Scholar 

  367. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE Acoust. Speech Signal Process. Mag. (1986)

    Google Scholar 

  368. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. (2001)

    Google Scholar 

  369. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. Conf. Comput. Vis. Pattern Recogn. (2006)

    Google Scholar 

  370. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. PAMI 13(9), (1991)

    Google Scholar 

  371. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1) (2001)

    Google Scholar 

  372. Schmid, C.: Constructing models for content-based image retrieval. Conf. Comput. Vis. Pattern Recogn. (2001)

    Google Scholar 

  373. Alahi, A., Vandergheynst, P., Bierlaire, M., Kunt, M.: Cascade of descriptors to detect and track objects across any network of cameras. Comput. Vis. Image Understand. 114(6), 624–640 (2010)

    Article  Google Scholar 

  374. Simard, P., Bottou, L., Haffner, P., LeCun, Y.: Boxlets: a fast convolution algorithm for signal processing and neural networks. Conf. Neural Inform. Process. Syst. (1999)

    Google Scholar 

  375. Vedaldi, A., Zisseman, A.: Efficient additive kernels via explicit feature maps. PAMI 34(3), (2012)

    Google Scholar 

  376. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3), (2010)

    Google Scholar 

  377. Martin, E., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231, (1996)

    Google Scholar 

  378. Mihael, A., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: ordering points to identify the clustering structure. SIGMOD ’99 Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data

    Google Scholar 

  379. Muja, M., Rusu, R.B., Bradski, G., Lowe, D.G.: REIN—a fast, robust, scalable recognition infrastructure. Int. Conf. Robot Autom. (2011)

    Google Scholar 

  380. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. Intell. Robots Syst. (2010)

    Google Scholar 

  381. Alvaro, C., Martinez, M., Siddhartha S.: Srinivasa. MOPED: a scalable and low latency object recognition and pose estimation system. Int. Conf. Robot Autom. (2010)

    Google Scholar 

  382. Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. PAMI 26(8), (2004)

    Google Scholar 

  383. Moré, J.J.: The Levenberg-Marquardt algorithm implementation and theory. Numer. Anal. Lect. Notes Math. 630, 105–116 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  384. Lecun, Y.: Learning invariant feature hierarchies. Eur. Conf. Comput. Vis. (2012)

    Google Scholar 

  385. Ranzato, M.A., Huang, F.-J., Boreau, Y.-L., Cun, Y.L.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. Conf. Comput. Vis. Pattern Recogn. (2007)

    Google Scholar 

  386. Boureau, Y.-L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in vision algorithms. Int. Conf. Mach. Learn. (2010)

    Google Scholar 

  387. Kingma, D., LeCun, Y.: Regularized estimation of image statistics by score matching. Conf. Neural Inform. Process. Syst. (2010)

    Google Scholar 

  388. Losson, O., Macaire, L., Yang, Y.: Comparison of color demosaicing methods. Adv. Imaging Electron Phys. 162, 173–265 (2010)

    Article  Google Scholar 

  389. Xin, L., Gunturk, B., Zhang, L.: Image demosaicing: a systematic survey. Proceedings of SPIE 6822, Visual Communications and Image Processing, 68221J (2008)

    Google Scholar 

  390. Tanbakuchi, A.A., et al.: Adaptive pixel defect correction. Proceedings of SPIE 5017, Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications IV, (2003)

    Google Scholar 

  391. Ibenthal, A.: Image sensor noise estimation and reduction. ITG Fachausschuss 3.2 Digitale Bildcodierung (2007)

    Google Scholar 

  392. An Objective Look at FSI and BSI, Aptina White Paper

    Google Scholar 

  393. Cossairt, O., Miau, D., Nayar, S.K.: Gigapixel computational imaging. IEEE Int. Conf. Comput. Photogr. (2011)

    Google Scholar 

  394. Eastman Kodak Company, E-58 technical data/color negative film. Kodak 160NC Technical Data Manual, (2000)

    Google Scholar 

  395. Kuthirummal, S., Nayar, S.K.: Multiview radial catadioptric imaging for scene capture. ACM Trans. Graph. (also Proc. of ACM SIGGRAPH), (2006)

    Google Scholar 

  396. Zhou, C., Nayar, S.K.: Computational cameras: convergence of optics and processing. IEEE Trans. Image Process. 20(12), (2011)

    Google Scholar 

  397. Krishnan, G., Nayar, S.K.: Towards a true spherical camera. Proceedings of SPIE 7240, Human Vision and Electronic Imaging XIV, 724002 (2009)

    Google Scholar 

  398. Reinhard, H., Debevec, P., Ward, M., Kaufmann, M.: High Dynamic range imaging, 2nd edition acquisition, display, and image-based lighting. 2 ed., Morgan Kaufmann, (2010)

    Google Scholar 

  399. Gallo, O., et al.: Artifact-free high dynamic range imaging. IEEE Int. Conf. Comput. Photogr. (2009)

    Google Scholar 

  400. Grossberg, M.D., Nayar, S.K.: High dynamic range from multiple images: which exposures to combine? Int. Conf. Comput. Vis. (2003)

    Google Scholar 

  401. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. Proc. SIGGRAPH (2006)

    Google Scholar 

  402. Wilson, T., Juskaitis, R., Neil, M., Kozubek, M.: Confocal microscopy by aperture correlation. Opt. Lett. 21(23), 1879–1881 (1996)

    Article  Google Scholar 

  403. Corle, T.R., Kino, G.S.: Confocal Scanning Optical Microscopy and Related Imaging Systems. Academic Press, New York (1996)

    Google Scholar 

  404. Fitch, J.P.: Synthetic Aperture Radar. Springer, New York (1988)

    Book  Google Scholar 

  405. Ng, R., et al.: Light field photography with a hand-held plenoptic camera. Stanford Tech Report CTSR 2005-02

    Google Scholar 

  406. Ragan-Kelley, J., et al.: Decoupling algorithms from schedules for easy optimization of image processing pipelines. ACM Trans. Graph. 31(4), (2012)

    Google Scholar 

  407. Levoy, M.: Experimental platforms for computational photography. Comput. Graph. Appl. 30 (2010)

    Google Scholar 

  408. Adams, A., et al.: The Frankencamera: an experimental platform for computational photography. Proc. SIGGRAPH. (2010)

    Google Scholar 

  409. Salsman, K.: 3D vision for computer based applications. Technical Report, Aptina, Inc., (2010).

    Google Scholar 

  410. Cossairt, O., Nayar, S.: Spectral focal sweep: extended depth of field from chromatic aberrations. IEEE Int. Conf. Comput. Photogr. (2010). (see also US Patent EP2664153A1)

    Google Scholar 

  411. Fife, K., El Gamal, A., Philip Wong, H.-S.: A 3D multi-aperture image sensor architecture. Proc. IEEE Custom Integr. Circ. Conf. 281–284, (2006)

    Google Scholar 

  412. Wang, A., Gill, P., Molnar, A.: Light field image sensors based on the Talbot effect. Appl. Optics 48(31), 5897–5905 (2009)

    Article  Google Scholar 

  413. Shankar, M., et al.: Thin infrared imaging systems through multichannel sampling. Appl. Optics 47(10), B1–B10 (2008)

    Article  Google Scholar 

  414. Flusser, B.Z.J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  415. Hirschmûller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. Conf. Comput. Vis. Pattern Recogn. (2005)

    Google Scholar 

  416. Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. Br. Mach. Vis. Conf. (2000)

    Google Scholar 

  417. Faugeras, O.: Three Dimensional Computer Vision. MIT Press, Cambridge, MA (1993)

    Google Scholar 

  418. Maybank, S.J., Faugeras O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), (1992)

    Google Scholar 

  419. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  420. Luong, Q.-T., Faugeras, O.D.: The fundamental matrix: theory, algorithms, and stability analysis. Int. J. Comput. Vis. 17 (1995)

    Google Scholar 

  421. Hartley, R.I.: Theory and practice of projective rectification. Int. J. Comput. Vis. 35 (1999)

    Google Scholar 

  422. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47 (2002)

    Google Scholar 

  423. Lazaros, N., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware. Int. J. Optomechatroni. 2(4), 435–462 (2008)

    Article  Google Scholar 

  424. Clark, D.E., Ivekovic, S.: The Cramer-Rao lower bound for 3-D state estimation from rectified stereo cameras. IEEE Fusion (2010)

    Google Scholar 

  425. Nayar, S.K., Gupta, M.: Diffuse structured light. Int. Conf. Comput. Photogr. (2012)

    Google Scholar 

  426. Cattermole, F.: Principles of Pulse Code Modulation, 1st ed., American Elsevier Pub. Co., (1969)

    Google Scholar 

  427. Pagès, J., Salvi, J.: Coded light projection techniques for 3D reconstruction. J3eA, Journal sur l’enseignement des sciences et technologies de l’information et des systèmes 4(1), (2005) (Hors-Série 3)

    Google Scholar 

  428. Gu, J., et al.: Compressive structured light for recovering inhomogeneous participating media. Eur. Conf. Comput. Vis. (2008)

    Google Scholar 

  429. Nayar, S.K.: Computational cameras: approaches, benefits and limits. Technical Report, Computer Science Department, Columbia University, (2011)

    Google Scholar 

  430. Lehmann, M., et al.: CCD/CMOS lock-in pixel for range imaging: challenges, limitations and state-of-the-art. CSEM, Swiss Center for Electronics and Microtechnology, (2004)

    Google Scholar 

  431. Andersen, J.F., Busck, J., Heiselberg, H.: Submillimeter 3-D laser radar for space shuttle tile inspection. Danisch Defense Research Establishment, Copenhagen, Denmark, (2013)

    Google Scholar 

  432. Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.).: Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications Lecture Notes in Computer Science, Springer (2013)

    Google Scholar 

  433. Levoy, M., Hanrahan, P.: Light field rendering. SIGGRAPH ’96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996)

    Google Scholar 

  434. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. SIGGRAPH ’96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996)

    Google Scholar 

  435. Drebin, R.A.: Loren Carpenter, and Pat Hanrahan, volume rendering. SIGGRAPH (1988)

    Google Scholar 

  436. Levoy, M.: Display of surfaces from volume data. CG&A (1988)

    Google Scholar 

  437. Levoy, M.: Volume rendering using the Fourier projection slice theorem. Technical report CSL-TR-92-521, Stanford University, (1992)

    Google Scholar 

  438. Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. ISMAR ’09 Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality (2009)

    Google Scholar 

  439. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR’07, Nara)

    Google Scholar 

  440. Lucas, B.D., Kanade, T.: An image registration technique with an application to stereo vision. Proceedings of Image Understanding Workshop, (1981)

    Google Scholar 

  441. Beauchemin, S., Barron, J.D.: The computation of optical flow. ACM Comput. Surv. 27(3), (1995)

    Google Scholar 

  442. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  443. Baker, S., et al.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2009)

    Article  Google Scholar 

  444. Quénot, G.M., Pakleza, J., Kowalewski, T.A.: Particle image velocimetry with optical flow. In: Experiments in Fluids, vol 25(3), pp. 177–189, (1998)

    Google Scholar 

  445. Trulls, E., Sanfeliu, A., Moreno-Noguer, F.: Spatiotemporal descriptor for wide-baseline stereo reconstruction of non-rigid and ambiguous scenes. Eur. Conf. Comput. Vis. (2012)

    Google Scholar 

  446. Steinman, S.B., Steinman, B.A., Garzia, R.P.: Foundations of Binocular Vision: A Clinical Perspective. McGraw-Hill, New York (2000)

    Google Scholar 

  447. Roy, S., Meunier, J., Cox, I.J.: Cylindrical rectification to minimize epipolar distortion. Conf. Comput. Vis. Pattern Recogn. (1997)

    Google Scholar 

  448. Oram, D.: Rectification for any epipolar geometry. Br. Mach. Vis. Conf. (2001)

    Google Scholar 

  449. Takita, K., et al.: High-accuracy subpixel image registration based on phase-only correlation. Institute of Electronics, Information and Communication Engineers(IEICE), (2003)

    Google Scholar 

  450. Huhns, T.: Algorithms for subpixel registration. CGIP Comput. Graph. Image Process. (1986)

    Google Scholar 

  451. Foroosh (Shekarforoush).: Hassan, Josiane B. Zerubia, and Marc Berthod. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. (2002)

    Google Scholar 

  452. Zitnick, L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. Carnegie Mellon University, Technical report CMU-RI-TR-99-35

    Google Scholar 

  453. Jian, S., Li, Y., Kang, S.B., Shum, H.-Y.: Symmetric stereo matching for occlusion handling. CVPR ’05 Proceedings of the 2005 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 2

    Google Scholar 

  454. Kang, S.B., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo. Conf. Comput. Vis. Pattern Recogn. (2001)

    Google Scholar 

  455. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. SIGGRAPH Proc. (1996)

    Google Scholar 

  456. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. UIST ’11 Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, (2011)

    Google Scholar 

  457. Newcombe, RA. et al.: KinectFusion: real-time dense surface mapping and tracking. ISMAR ’11 Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality

    Google Scholar 

  458. Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): part I the essential algorithms. IEEE Robotics Autom. Mag. (2006)

    Google Scholar 

  459. Bailey, T., Durrant-Whyte, H.: Simultaneous localisation and mapping (SLAM): part II state of the art. IEEE Robotics Autom. Mag. (2006)

    Google Scholar 

  460. Seitz, S., et al.: A comparison and evaluation of multi-view stereo reconstruction algorithms. CVPR 1, 519–526 (2006)

    Google Scholar 

  461. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47 (2002)

    Google Scholar 

  462. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56 (2004)

    Google Scholar 

  463. Gallup, D., Pollefeys, M., Frahm, J.M.: 3D reconstruction using an n-layer heightmap. Pattern Recogn. Lect. Notes Comput. Sci. 6376 (2010)

    Google Scholar 

  464. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. Int Conf Comput Vis (ICCV) IEEE, 2320–2327, (2011)

    Google Scholar 

  465. Hwangbo, M., Kim, J.-S., Kanade, T.: Inertial-aided KLT feature tracking for a moving camera. Intell. Robots Syst. (IROS)—IEEE. (2009)

    Google Scholar 

  466. Lovegrove, S.J., Davison, A.J.: Real-time spherical Mosaicing using whole image alignment. Eur. Conf. Comput. Vis. (2010)

    Google Scholar 

  467. Malis, E.: Improving vision-based control using efficient second-order minimization techniques. Int. Conf. Robot Autom. (2004)

    Google Scholar 

  468. Kaiming H, Sun, J., Tang, X.: Guided image filtering. Eur. Conf. Comput. Vis. (2010)

    Google Scholar 

  469. Rhemann, C., et al.: Fast cost-volume filtering for visual correspondence and beyond. CVPR, IEEE, 3017–3024, (2011)

    Google Scholar 

  470. Fattal, R.: Edge-avoiding wavelets and their applications. SIGGRAPH (2009)

    Google Scholar 

  471. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM SIGGRAPH 2011 papers Article No. 69

    Google Scholar 

  472. Wolberg, G.: Digital Image Warping. Wiley, Hoboken, NJ (1990)

    Google Scholar 

  473. Baxes, G.: Digital Image Processing: Principles and Applications. Wiley, Hoboken, NJ (1994)

    Google Scholar 

  474. Fergus, R., et al.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), (2006)

    Google Scholar 

  475. Rohr, K.: Landmark-Based Image Analysis Using Geometric and Intensity Models. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  476. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd ed., O’Reilly Media, (2005)

    Google Scholar 

  477. Zinner, C., Kubinger, W., Isaacs, R.: PfeLib—a performance primitives library for embedded vision. EURASIP, (2007)

    Google Scholar 

  478. Houston, M.: OpenCL overview. SIGGRAPH OpenCL BOF (2011), also on KHRONOS website

    Google Scholar 

  479. Zinner, C., Kubinger, W.: ROS-DMA: a DMA double buffering method for embedded image processing with resource optimized slicing. IEEE RTAS 2006, Real-Time and Embedded Technology and Applications Symposium (2006)

    Google Scholar 

  480. Kreahling, W.C., et al.: Branch elimination by condition merging. Euro-Par 2003 Parallel Process. Lect. Notes Comput. Sci. 2790, (2003)

    Google Scholar 

  481. Ullman, J.D., Aho, A.V.: Principles of Compiler Design. Addison-Wesley, (1977)

    Google Scholar 

  482. Ragan-Kelley, J., et al.: Decoupling algorithms from schedules for easy optimization of image processing pipelines. ACM Trans. Graph. SIGGRAPH 31(4), (2012)

    Google Scholar 

  483. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. Eur. Conf. Comput. Vis. (2012)

    Google Scholar 

  484. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Meth. 9 (2012)

    Google Scholar 

  485. Muja, M.: Recognition pipeline and object detection scalability. Summer 2010 Internship Presentation, University of British Columbia

    Google Scholar 

  486. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. Conf. Comput. Vis. Pattern Recogn. (2001)

    Google Scholar 

  487. Swain, M., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7 (1991)

    Google Scholar 

  488. Zhang, Z.: A flexible new technique for camera calibration. EEE Trans. Pattern. Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  489. Viola, P.A., Jones, M.J.: Robust real time object detection. Int. J. Comput. Vis. (2001)

    Google Scholar 

  490. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-D objects from appearance. Int. J. Comput. Vis. 14 (1995)

    Google Scholar 

  491. Grosse, R., et al.: Ground-truth dataset and baseline evaluations for intrinsic image algorithms. Int. Conf. Comput. Vis. (2009)

    Google Scholar 

  492. Haltakov, V., Unger, C., Ilic, S.: Framework for generation of synthetic ground truth data for driver assistance applications. Pattern Recogn. Lect. Notes Comput. Sci. 8142 (2013)

    Google Scholar 

  493. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. Comput. Vis. Pattern Recogn. 2 (2005)

    Google Scholar 

  494. Agaian, S.S., Tourshan, K., Noonan, J.P.: Parametric Slant-Hadamard transforms. Proc. SPIE, (2003)

    Google Scholar 

  495. Sauvola, J., Pietaksinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), (2000)

    Google Scholar 

  496. Yen, J.C., Chang, F.J., Chang, S.: A new criterion for automatic multilevel thresholding. Trans. Image Process. 4(3), (1995)

    Google Scholar 

  497. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 2004

    Google Scholar 

  498. Gaskill, J.D.: Linear Systems, Fourier Transforms, and Optics. Wiley, Hoboken, NJ (1978)

    Google Scholar 

  499. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Upper Saddle River, NJ (2001)

    Google Scholar 

  500. Flusser, J., Suk, T., Zitova, B.: Moments and Moment Invariants in Pattern Recognition. Wiley, Hoboken, NJ (2009)

    Book  MATH  Google Scholar 

  501. Mikolajcyk, K., Schmid, C.: An affine invariant interest point detector. Int. Conf. Comput. Vis. (2002)

    Google Scholar 

  502. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University, (1980)

    Google Scholar 

  503. Sivic, J.: Efficient Visual search of videos cast as text retrieval. PAMI 31 (2009).

    Google Scholar 

  504. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. AMFG’07 Proceedings of the 3rd International Conference on Analysis and Modeling of Faces and Gestures (2010)

    Google Scholar 

  505. Scale-Space. Encyclopedia of Computer Science and Engineering. Wiley, Hoboken, NJ, (2008)

    Google Scholar 

  506. Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat 21(2), 224–270 (1994)

    Google Scholar 

  507. Bengio, Y.: Learning Deep Architectures for AI, Foundations and Trends in Machine Learning. Now Publishers Inc USA, (2009)

    Google Scholar 

  508. Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), (2006)

    Google Scholar 

  509. Olson, E.: AprilTag: a robust and flexible visual fiducial system. Int. Conf. Robotics Autom. (2011)

    Google Scholar 

  510. Farabet, C., et al.: Hardware accelerated convolutional neural networks for synthetic vision systems. ISCAS IEEE 257–260, (2010)

    Google Scholar 

  511. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59 (2004)

    Google Scholar 

  512. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEE Trans. Comput. (1973)

    Google Scholar 

  513. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), (2010)

    Google Scholar 

  514. Yi Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. Conf. Comput. Vis. Pattern Recogn. (2011)

    Google Scholar 

  515. Amit, Y., Trouve, A.: POP: patchwork of parts models for object recognition. Int. J. Comput. Vis. 75 (2007)

    Google Scholar 

  516. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. Conf. Comput. Vis. Pattern Recogn. (2006)

    Google Scholar 

  517. Grauman, K., Darrell, T.: The pyramid Match Kernel: discriminative classification with sets of image features. Int. Conf. Comput. Vis. (2005)

    Google Scholar 

  518. Michal, A., Elad, M., Bruckstein, A.: KSVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 64 (2006)

    Google Scholar 

  519. Fei-Fei, L., Fergus, R., Torralba, A.: Recognizing and learning object categories. Conf. Comput. Vis. Pattern Recogn. (2007)

    Google Scholar 

  520. Johnson, A.: Spin-Images: A Representation for 3-D Surface Matching Ph.D. dissertation, technical report CMU-RI-TR-97-47, Robotics Institute, Carnegie Mellon University, (1997)

    Google Scholar 

  521. Zoltan-Csaba, M., Pangercic, D., Blodow, N., Beetz, M.: Combined 2D-3D categorization and classification for multimodal perception systems. Int. J. Robotics Res. Arch. 30(11), (2011)

    Google Scholar 

  522. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. (1988)

    Google Scholar 

  523. Tombari, F., Salti, S., Di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. Int. Conf. Image Process. (2011)

    Google Scholar 

  524. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. Int. Conf. Comput. Vis. (2001)

    Google Scholar 

  525. Ragan-Kelley, J., et al.: Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. PLDI ’13 Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, (2013)

    Google Scholar 

  526. Kindratenko, V.V., et al.: GPU clusters for high-performance computing. In: Proceedings of Workshop on Parallel Programming on Accelerator Clusters—PPAC’09, (2009)

    Google Scholar 

  527. Munshi, A., et al.: OpenCL Programming Guide, 1 ed., Addison-Wesley Professional, (2011)

    Google Scholar 

  528. Prince, S.: Computer Vision: Models, Learning, and Inference. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  529. Lindeberg, T.: Scale Space Theory in Computer Vision. Springer, New York (2010)

    MATH  Google Scholar 

  530. Pele, O.: Distance Functions: Theory, Algorithms and Applications. Ph.D. Thesis, Hebrew University, (2011)

    Google Scholar 

  531. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. (1999)

    Google Scholar 

  532. Bache, K., Lichman, M.: UCI Machine Learning Repository (http://archive.ics.uci.edu/ml), University of California, School of Information and Computer Science, Irvine, CA, (2013)

  533. Zach, C.: Fast and high quality fusion of depth maps. 3DPVT Joint 3DIM/3DPVT Conference 3D Imaging, Modeling, Processing, Visualization, Transmission (2008)

    Google Scholar 

  534. Visual Genomes for Synthetic Vision, Scott Krig, TBP (2016)

    Google Scholar 

  535. Grimes, D.B., Rao, R.P.N.: Bilinear sparse coding for invariant vision. Neural Comput. 17(1), 47–73 (2005)

    Article  Google Scholar 

  536. Roger, G., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariant sparse coding for audio classification. In: Proceedings of the 23rd Conference in Uncertainty in Artificial Intelligence (UAI’07), (2007)

    Google Scholar 

  537. The Statistical Inefficiency of Sparse Coding for Images (or, One Gabor to Rule them All), Technical Report, James Bergstra, Aaron Courville, and Yoshua Bengio (2011)

    Google Scholar 

  538. Scalable Object Detection using Deep Neural Networks Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov

    Google Scholar 

  539. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  540. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  541. Anh, N., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. CVPR (2015)

    Google Scholar 

  542. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV (2014)

    Google Scholar 

  543. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. IJCV (2008)

    Google Scholar 

  544. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. CVPR (2005)

    Google Scholar 

  545. Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. IJCV (2013)

    Google Scholar 

  546. Min, L., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)

    Google Scholar 

  547. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions

    Google Scholar 

  548. Behnke, S.: Hierarchical neural networks for image interpretation. Draft submitted to Springer Published as volume 2766 of Lecture Notes in Computer Science ISBN: 3-540-40722-7, Springer (2003)

    Google Scholar 

  549. Girshick, R., Iandola, F., Darrell, T., Malik, J.: Deformable part models are convolutional neural networks. CVPR (2014)

    Google Scholar 

  550. van de Sande, E.A., Snoek, C.G.M., Smeulders, A.W.M.: Fisher and VLAD with FLAIR. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  551. Ranzato, M., Boureau, Y., LeCun, Y.: Sparse feature learning for deep belief networks. In: Proceedings of Neural Information Processing Systems (NIPS), (2007)

    Google Scholar 

  552. Schmidhuber, J.: Deep learning in neural networks: an overview, Technical Report IDSIA-03-14/arXiv:1404.7828 v4

    Google Scholar 

  553. Li D., Yu, D.: Deep learning methods and applications, foundations and Trends® in signal processing 7

    Google Scholar 

  554. Yoshua, B., Goodfellow, I.J., Courville, A.: Deep learning. MIT Press, (2016) (in preparation)

    Google Scholar 

  555. Anderson, J.A., Rosenfeld, E., (eds.).: Neurocomputing: foundations of research. MIT Press, Cambridge MA, (1988). Also Neurocomputing vol. 2: directions for research. MIT Press, Cambridge MA, (1991)

    Google Scholar 

  556. Jackson, P.: Introduction to Expert Systems, 3 ed., Addison Wesley, (1998)

    Google Scholar 

  557. Rosenblatt, F.: The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. (1958)

    Google Scholar 

  558. Joseph, R.D.: Contributions to Perceptron Theory. PhD thesis, Cornell Univ. (1961)

    Google Scholar 

  559. Wiesel, D.H., Hubel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (1959)

    Google Scholar 

  560. Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction, and functional architecturein the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Article  Google Scholar 

  561. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. (1943)

    Google Scholar 

  562. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  563. Rosenblatt, F.: The Perceptron—a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  564. Ivakhnenko, A.G.: The group method of data handling—a rival of the method of stochastic approximation. Soviet Autom. Contr. (1968)

    Google Scholar 

  565. Ivakhnenko, A.G., Lapa, V.G.: Cybernetic predicting devices. CCM Inform. Corp. (1965)

    Google Scholar 

  566. Ivakhnenko, A.G., Lapa, V.G., McDonough, R.N.: Cybernetics and Forecasting Techniques. American Elsevier, NY, (1967)

    Google Scholar 

  567. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 4, 364–378 (1971)

    Article  MathSciNet  Google Scholar 

  568. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, (2012)

    Google Scholar 

  569. Ikeda, S., Ochiai, M., Sawaragi, Y.: Sequential GMDH algorithm and its application to river flow prediction. IEEE Trans. Syst. Man Cybern. 7, 473–479 (1976)

    Article  Google Scholar 

  570. Fukushima, K.: Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron. Trans. IECE J. 62(10), 658–665 (1979)

    Google Scholar 

  571. Fukushima, K.: Neocognitron: a self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  572. Dreyfus, S.E.: The numerical solution of variational problems. J. Math. Anal. Appl. 5(1), 30–45 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  573. Dreyfus, S.E.: The computational solution of optimal. (1973)

    Google Scholar 

  574. LeCun, Y.: Une proc´edure d’apprentissage pour r´eseau `a seuil asym´etrique. Proceedings of Cognitiva, vol 85, Paris, pp. 599–604, (1985)

    Google Scholar 

  575. LeCun, Y.: A theoretical framework for back-propagation. In: Touretzky, D., Hinton, G., Sejnowski, T., (eds.) Proceedings of the 1988 Connectionist Models Summer School, CMU, Morgan Kaufmann, Pittsburgh, PA, pp. 21–28, (1988)

    Google Scholar 

  576. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Back-propagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  577. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Touretzky, D. S., (ed.) Advances in Neural Information Processing Systems, vol 2, Morgan Kaufmann, pp. 396–404, (1990a)

    Google Scholar 

  578. Kelley, H.J.: Gradient theory of optimal flight paths. ARS J. 30(10), 947–954 (1960)

    Article  MATH  Google Scholar 

  579. Bryson, A.E.: A gradient method for optimizing multi-stage allocation processes. In: Proc. Harvard Univ. Symposium on Digital Computers and Their Applications, (1961)

    Google Scholar 

  580. Bryson, Jr., A. E. and Denham, W. F.: A steepest-ascent method for solving optimum programming problems. Technical Report BR-1303, Raytheon Company, Missle and Space Division, (1961)

    Google Scholar 

  581. Werbos, P.J.: The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. Wiley, (1994)

    Google Scholar 

  582. Schmidhuber, J.: Learning complex, extended sequences using the principle of history compression. Neural Comput. (1992)

    Google Scholar 

  583. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. (2014)

    Google Scholar 

  584. Hochreiter, S., Jürgen, S.: Long short-term memory, neural computation. (1997)

    Google Scholar 

  585. Ng, A.: Stanford CS229 Lecture notes. Support Vector Mach.

    Google Scholar 

  586. Shawe-Taylor, J., Cristianini, N.: Support vector machines and other kernel-based learning methods, Cambridge University Press, (2000)

    Google Scholar 

  587. Hinton, G.E., Sejnowski, T.J., Rumelhart, D.E., McClelland, J.L.: Learning and relearning in Boltzmann machines, PDP Research Group (1986)

    Google Scholar 

  588. Ackley, D.H., Hinton, G.E., Sejnowski, TJ.: A learning algorithm for Boltzmann machines. Cogn. Sci. (1985)

    Google Scholar 

  589. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. (1982)

    Google Scholar 

  590. Smolensky, P.: Chapter 6: information processing in dynamical systems: foundations of harmony theory. In: Rumelhart, D.E., McLelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1, Foundations. MIT Press (1986)

    Google Scholar 

  591. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv (2014)

    Google Scholar 

  592. Also see NiN slides from ILSVRC (2014) http://www.image-net.org/challenges/LSVRC/2014/slides/ILSVRC2014_NUS_release.pdf

  593. LeCun, Y.: A theoretical framework for back-propagation. In: Touretzky, D., Hinton, G., Sejnowski, T., (eds.) Proceedings of the 1988 Connectionist Models Summer School, CMU, pp. 21–28, Morgan Kaufmann, Pittsburgh, PA, (1988)

    Google Scholar 

  594. Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Remote Contr. (1963)

    Google Scholar 

  595. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. ACM COLT ’92, (1992)

    Google Scholar 

  596. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. (1995)

    Google Scholar 

  597. Vapnik, V.: Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow, (1979). English translation, Springer, New York, (1982)

    Google Scholar 

  598. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  599. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)

    MATH  Google Scholar 

  600. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. (1964)

    Google Scholar 

  601. Carreira-Perpignan, M.A., Hinton, G.E.: On contrastive divergence learning. In: Artificial Intelligence and Statistics, (2005)

    Google Scholar 

  602. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column Deep Neural Networks for Image Classification, cvpr (2012)

    Google Scholar 

  603. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning, AISTATS (2011)

    Google Scholar 

  604. Rosenblatt, F.: Principles of Neurodynamics Unclassifie—Armed Services Technical Informatm Agency. Spartan, Washington, DC (1961)

    Google Scholar 

  605. Baddeley, A., Eysenck, M., Anderson, M.: Memory. Psychology Press, (2009)

    Google Scholar 

  606. Goldman-Rakic, P.S.: Cellular basis of working memory. Neuron 14(3), 477–485 (1995)

    Article  Google Scholar 

  607. Rumelhart, D.E., McClelland, J.L., Group, P.R., et al.: Parallel distributed processing, vol 1. MIT Press, (1986)

    Google Scholar 

  608. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. arXiv:1409.4842, (2014)

    Google Scholar 

  609. Von Neumann, J.: First draft of a report on the edvac. (1945)

    Google Scholar 

  610. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: International Conference on Machine Learning (ICML), (2013)

    Google Scholar 

  611. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1994)

    MATH  Google Scholar 

  612. Stollenga, M., Masci, J., Gomez, F., Schmidhuber, J.: Deep networks with internal selective attention through feedback connections. ICML (2014)

    Google Scholar 

  613. Rupesh Kumar, S., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.: Compete to compute. In: NIPS, (2013)

    Google Scholar 

  614. Cristian, B., Caruana, R., Niculescu-Mizil, A.: Model compression, ACM SIGKDD (2006)

    Google Scholar 

  615. Mansimov, E., Srivastava, N., Salakhutdinov, R.: Initialization Strategies of Spatio-Temporal Convolutional Neural Networks, Technical Report, (2014)

    Google Scholar 

  616. Weng, J., Ahuja, N., Huang, T.S.: Cresceptron: a self-organizing neural network which grows adaptively. In: Proceedings of Int’l Joint Conference on Neural Networks, Baltimore, MD, (1992)

    Google Scholar 

  617. Cadieu, CF, Hong H, Yamins DLK, Pinto N, Ardila D, Solomon EA, Majaj NJ, DiCarlo JJ.: Deep neural networks rival the representation of primate IT cortex for core visual object recognition, (2014), PLOS 2014DOI: 10.1371/journal.pcbi.1003963

    Google Scholar 

  618. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse coding and vector quantization. ICML (2011)

    Google Scholar 

  619. Jarrett, K., Kavukcuoglu, K., Ranzato, M., Le-Cun, Y.: What is the best multi-stage architecture for object recognition?, ICCV (2009)

    Google Scholar 

  620. Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network. NIPS (2014)

    Google Scholar 

  621. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. (2006)

    Google Scholar 

  622. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. NIPS (2007)

    Google Scholar 

  623. Kandel, E.R., Schwartz, J.H., Jessel, T.M. (eds.) Principles of Neural Science, 4th ed., McGraw-Hill, (2000)

    Google Scholar 

  624. Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. (1999)

    Google Scholar 

  625. Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybernetics (1976)

    Google Scholar 

  626. Métin, C., Frost, D.O.: Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus. Proc. Natl. Acad. Sci. U. S. A. 86(1), 357–361 (1989)

    Article  Google Scholar 

  627. Roe, A.W., Pallas, S.L., Kwon, Y.H., Sur, M.: Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. J. Neurosci. 12(9), 3651–3664 (1992)

    Google Scholar 

  628. Bach-y-Rita, P., Kaczmarek, K.A., Tyler, M.E., Garcia-LoraVenue, J.: Form perception with a 49-point electrotactile stimulus array of the tongue: a technical note. J. Rehabil. Res. Dev. (1998)

    Google Scholar 

  629. Bach-y-Rita, P., Tyler, M.E., Kaczmarek, K.A.: Seeing with the brain. IJHCI (2003)

    Google Scholar 

  630. Laurenz, W.: How Does Our Visual System Achieve Shift and Size Invariance, Problems in Systems Neuroscience, Oxford University Press, (2002)

    Google Scholar 

  631. Thomas Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. (2011)

    Google Scholar 

  632. Gross, G.N., Lømo, T., Sveen, O.: Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output, Per Anderson, The Interneuron, University of California Press, Los Angeles, (1969)

    Google Scholar 

  633. John, C.E., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine, Springer, New York, (1967)

    Google Scholar 

  634. Costas, S.: Interneuronal mechanisms in the cortex. The Interneuron, University of California Press, Los Angeles, (1969)

    Google Scholar 

  635. Stephen, G.: Contour enhancement, short-term memory, and constancies in reverberating neural networks, Studies in Applied Mathematics, (1973)

    Google Scholar 

  636. Parikh, D., Zitnick, C.L.: The role of features, algorithms and data in visual recognition. CVPR (2010)

    Google Scholar 

  637. Christopher, B.: Pattern Recognition and Machine Learning, Springer, (2006)

    Google Scholar 

  638. Eigen, D., Rolfe, J., Fergus, R., LeCun, Y.: Understanding deep architectures using a recursive convolutional network, arXiv:1312.1847 [cs.LG]

    Google Scholar 

  639. NIPS.: Tutorial—Deep Learning for Computer Vision (Rob Fergus) (2013)

    Google Scholar 

  640. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. NIPS (2012)

    Google Scholar 

  641. Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. ECCV (2014)

    Google Scholar 

  642. Zeiler, M., Taylor, G., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV, (2011)

    Google Scholar 

  643. Olga, R., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Large scale visual recognition challenge. ImageNet http://arxiv.org/abs/1409.0575, (2015)

  644. Random Search for Hyper-Parameter Optimization James Bergstra JAMES.BERGSTRA@UMONTREAL.CA Yoshua Bengio, JMLR (2012)

    Google Scholar 

  645. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: A deep convolutional activation feature for generic visual recognition. CVPR (2013)

    Google Scholar 

  646. Yamins, D.L., Hong, H., Cadieu, C., DiCarlo, J.J.: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream. NIPS (2013)

    Google Scholar 

  647. Haykin, S.: Neural Networks: a comprehensive foundation. Pearson Educ. (1999)

    Google Scholar 

  648. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. (2013)

    Google Scholar 

  649. Daniel L.K.Y., Honga, H., Cadieua, C.F., Solomona, E.A., Seiberta, D., DiCarloa, J.J.: Performance-optimized hierarchical models predict neural responses in higher visual cortex. Natl. Acad. Sci. (2015)

    Google Scholar 

  650. US Government BRAIN Initiative.: http://www.artificialbrains.com/darpa-synapse-program

  651. European Union Human Brain Project.: https://www.humanbrainproject.eu

  652. Canadian Government Computation & Adaptive Perception Canadian Institute For Advanced Research CIFAR. http://www.cifar.ca/neural-computation-and-adaptive-perception-research-progress

  653. Tatyana, V., Sharpee, O., Kouh M., Reynolds, J.H.: Trade-off between curvature tuning and position invariance in visual area. PNAS. (2013)

    Google Scholar 

  654. Neural Networks, Tricks of the Trade, 2nd ed., Springer, (2012)

    Google Scholar 

  655. LeCun, Y.: Convolutional networks and applications in vision, Comput. Sci. Dept., New York Univ., New York, NY, USA, Kavukcuoglu, K., Farabet, C., ISCAS. (2010)

    Google Scholar 

  656. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ICLR. (2015)

    Google Scholar 

  657. Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. CVPR. (2008)

    Google Scholar 

  658. Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput Biol. (2008)

    Google Scholar 

  659. Yang Y., Hospedales, T.M.: Deep neural networks for sketch recognition. (2015)

    Google Scholar 

  660. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting, JMLR. (2014)

    Google Scholar 

  661. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural network using drop connect. Int. Conf. Mach. Learn. (2013)

    Google Scholar 

  662. Breiman, L.: Bagging predictors. Mach. Learn. (1994)

    Google Scholar 

  663. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional. Neural Netw.

    Google Scholar 

  664. Mamalet, F., Garcia, C.: Simplifying convnets for fast learning. ICANN. (2012)

    Google Scholar 

  665. Gens, R., Domingos, P.: Deep symmetry networks. NIPS (2014) see also slides at http://research.microsoft.com/apps/video/default.aspx?id=219488

  666. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks?, NIPS (2014)

    Google Scholar 

  667. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV (2013)

    Google Scholar 

  668. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural network design. PWS Publishing, (1996)

    Google Scholar 

  669. Dominik S., M¨uller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. ICANN. (2010)

    Google Scholar 

  670. Kaiming, H., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. CVPR (2015)

    Google Scholar 

  671. Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., Shlens, J., Gunning, D., Mathieson, K., Dabrowski, W., et al.: Functional connectivity in the retina at the resolution of photoreceptors. Nature. (2010)

    Google Scholar 

  672. Rosenblatt, F.: The Perceptron: A theory of statistical separability in cognitive systems. Cornell Aeronautical Laboratory, Buffalo, Inc. Rep. No. VG-1196-G-1, (1958)

    Google Scholar 

  673. Auer, P., Burgsteiner, H., Maass, W.: A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Austr. Sci. Fund (2008)

    Google Scholar 

  674. Vapnik, V., Chervonenkis, A., Moskva, N.: Pattern Recognition Theory, Statistical Learning Problems. (1974)

    Google Scholar 

  675. Hearst, M.A., Berkeley, U.C.: Support vector machines. IEEE Intell. Syst. (1998)

    Google Scholar 

  676. John P.: How to implement SVM’s, Microsoft Research. IEEE Intelligent Systems, (1998)

    Google Scholar 

  677. Fukushima, K.: Cognitron: a self-organizing multilayered neural network, Biological Cybernetics, Springer, (1975)

    Google Scholar 

  678. Fukushima, K.: Artificial vision by multi-layered neural networks: and its advances. Neural Netw. 37, 103–119

    Google Scholar 

  679. Fukushima, K.: Training multi-layered neural network Neocognitron. Neural Netw. 40, 18–31

    Google Scholar 

  680. Joan, B., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv:1312.6203 [cs.LG] (2014)

    Google Scholar 

  681. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. ICLR. (2014)

    Google Scholar 

  682. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE (1998)

    Google Scholar 

  683. http://www.imagemagick.org/Usage/convolve/#convolve_vs_correlate

  684. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. CVPR. (2015)

    Google Scholar 

  685. Fractional max-pooling Benjamin Graham. CVPR. (2014)

    Google Scholar 

  686. The Human Connectome Project is a consortium of leading neurological research labs which are mapping out the pathways in the brain. See http://www.humanconnectomeproject.org/about/

  687. Cun, Y.L., Denker, J.S., Solla, S.A.: Optimal brain damage. NIPS. (1990)

    Google Scholar 

  688. Waibel, A.: Consonant recognition by modular construction of large phonemic time-delay neural networks. IEEE ASSP (1989)

    Google Scholar 

  689. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Large-scale FPGA-based convolutional networks. (2011)

    Google Scholar 

  690. Clement, F., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Hardware accelerated convolutional neural networks for synthetic vision systems. ISCAS. (2010)

    Google Scholar 

  691. Sermanet, P., Eigen, D., Zhang X., Mathieu M., Fergus R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. CVPR. (2014)

    Google Scholar 

  692. Dong, J., Xia, W., Chen, Q., Feng, J., Huang, Z., Yan, S.: Subcategory-aware object classification. CVPR. (2013)

    Google Scholar 

  693. Jun, Y., Ni, B., Kassim, A.A.: Half-CNN: a general framework for whole-image regression. CVPR. (2014)

    Google Scholar 

  694. Hugo, L., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. JMLR. (2009)

    Google Scholar 

  695. Yu, C., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.-F.: Fast neural networks with circulant projections. (2015)

    Google Scholar 

  696. Jochem, T., Dean Pomerleau, AI.: Life in the fast lane the evolution of an adaptive vehicle control system. Magazine (1996)

    Google Scholar 

  697. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. JMLR. (2010)

    Google Scholar 

  698. Hastie, T., Friedman.: The Elements of Statistical Learning. 2nd ed., Springer, (2009)

    Google Scholar 

  699. Boureau, Y.-L., Le Roux, N., Bach, F., Ponce, J., Lecun, Y.: Ask the locals: multi-way local pooling for image recognition ICCV’11

    Google Scholar 

  700. Ren, W., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition. CVPR. (2015)

    Google Scholar 

  701. Karen, S., Simonyan, K.: http://imagenet.org/tutorials/cvpr2015/recent.pdf, ILSVRC Submission Essentials in the light of recent developments. ImageNet, Tutorial (2015)

  702. Jon Shlens Google Research.: Directions in convolutional neural networks at Google, (2015), http://vision.stanford.edu/teaching/cs231n/slides/jon_talk.pdf

  703. Sergey, I., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CVPR. (2015)

    Google Scholar 

  704. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR. (2014)

    Google Scholar 

  705. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. Int. Conf. Artif. Intell. Stat. (2010)

    Google Scholar 

  706. Chunhui, G., Lim, J.J., Arbelaez, P., Malik, J.: Recognition using regions. CVPR. (2009)

    Google Scholar 

  707. Ross G.: Fast R-CNN. CVPR. (2015)

    Google Scholar 

  708. Volodymyr, M., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models of visual attention. NIPS. (2014)

    Google Scholar 

  709. Oriol, V., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. (2015)

    Google Scholar 

  710. Ren, M., Kiros, R., Zemel, R.: Exploring models and data for image question answering. ICML (2015)

    Google Scholar 

  711. Subhashini, V., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence—video to text. (2015)

    Google Scholar 

  712. Graves, A.: Generating sequences with recurrent neural networks. (2014)

    Google Scholar 

  713. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent networks by evolino. Neural Comput. (2007)

    Google Scholar 

  714. Weston, J., Chopra, S., Bordes, A.: Memory networks. ICLR. (2015)

    Google Scholar 

  715. LaRue, J.P.: A Bi-directional Neural Network Based on a Convolutional Neural Network and Associative Memory Matrices That Meets the Universal Approximation Theorem, Jadco Signals, Charleston, SC, USA, 1 315 717 9009 james@jadcosignals.com

    Google Scholar 

  716. Zhou, R.W., Quek, C.: DCBAM: A discrete chainable bidirectional associative memory. Pattern Recogn. Lett. (1991)

    Google Scholar 

  717. Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 7, 49–60 (1988)

    Article  MathSciNet  Google Scholar 

  718. Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. 353–359, (1972)

    Google Scholar 

  719. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  720. Schmidhuber, J.: Long Short-Term Memory: Tutorial on LSTM Recurrent Networks, http://people.idsia.ch/~juergen/lstm/

  721. Hochreiter, S., Steven, Y.A., Conwell, P.R.: Learning to learn using gradient descent. ICANN. (2001)

    Google Scholar 

  722. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to recurrent nets. Neural Comput. (1992)

    Google Scholar 

  723. Jeff, D., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. CVPR. (2015)

    Google Scholar 

  724. Mengye, R., Kiros, R., Zemel, R.: Exploring models and data for image question answering. ICML. (2015)

    Google Scholar 

  725. Alex, G., Doktors der Naturwissenschaften.: Supervised Sequence Labelling with Recurrent Neural Networks

    Google Scholar 

  726. Graves, A., Fernandez, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks. ICANN. (2007)

    Google Scholar 

  727. Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network architectures—DAG-RNN’s and the protein structure prediction problem. JMLR. (2003)

    Google Scholar 

  728. Karol, G., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recurrent neural network for image generation. ICML. (2015)

    Google Scholar 

  729. Richard, S., Huval, B., Bhat, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3D object classification. NIPS. (2012)

    Google Scholar 

  730. B., Shuai, Zuo, Z., Gang, W.: Quaddirectional 2D-recurrent neural networks for image labeling. IEEE SPL. (2015)

    Google Scholar 

  731. Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., Chen, Y.: Convolutional recurrent neural networks: learning spatial dependencies for image representation. CVPR. (2015)

    Google Scholar 

  732. Alex, G., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. NIPS. (2008)

    Google Scholar 

  733. Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. ICML. (2012)

    Google Scholar 

  734. Kyunghyun, C., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP. (2014)

    Google Scholar 

  735. Kyunghyun, C., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. SSST-8. (2014)

    Google Scholar 

  736. Peter, T., Horne, B.G., Lee Giles, C.: Collingwood, P.C.: Finite state machines and recurrent neural networks—automata and dynamical systems approaches. Neural Networks Pattern Recogn. Chapter 6, (1998)

    Google Scholar 

  737. Arai, K., Nakano, R.: Stable behavior in a recurrent neural network for a finite state machine. Neural Netw. 13(6), (2000)

    Google Scholar 

  738. Wojciech, Z., Sutskever, I.: Learning to execute

    Google Scholar 

  739. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed processing: explorations in the microstructure of cognition. (1986)

    Google Scholar 

  740. Elman, J.L.: Finding structure in time. Cogn. Sci. (1990)

    Google Scholar 

  741. Elman, J.L.: Distributed representations, simple recurrent networks, and grammatical structure. Mach. Learn. (1991)

    Google Scholar 

  742. Elman, J.L.: Learning and development in neural networks: the importance of starting small. Cognition (1993)

    Google Scholar 

  743. Williams, R.J., Zipser, D.: Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. Back-propagation: Theory, Architectures and Applications, Lawrence Erlbaum Publishers, (1995)

    Google Scholar 

  744. Robinson, A.J., Fallside, F.: The Utility Driven Dynamic Error Propagation Network. Technical Report CUED/F-INFENG/TR.1, Cambridge, (1987)

    Google Scholar 

  745. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE (1990)

    Google Scholar 

  746. Boden, M.: A guide to recurrent neural networks and backpropagation. (2014)

    Google Scholar 

  747. Ders, F.: Long Short-Term Memory in Recurrent Neural Networks, PhD Dissertation, (2001)

    Google Scholar 

  748. Qi, L., Zhu, J.: Revisit long short-term memory: an optimization perspective. NIPS. (2015)

    Google Scholar 

  749. Sutskever, I., Vinyals, O., Le, QV.: Sequence to sequence learning with neural networks. NIPS. (2014)

    Google Scholar 

  750. Kyunghyun, C., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. (2014)

    Google Scholar 

  751. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. CVPR. (2015)

    Google Scholar 

  752. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML), (2011)

    Google Scholar 

  753. Socher, R., Manning, C.D., Ng, A.Y.: Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Advances in Neural Information Processing Systems, NIPS. (2010)

    Google Scholar 

  754. Volodymyr, M., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent Models of Visual Attention

    Google Scholar 

  755. Steve, B., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In Computer Vision–ECCV, Springer, (2010)

    Google Scholar 

  756. Tom, S., Glasmachers, T., Schmidhuber, J.: High dimensions and heavy tails for natural evolution strategies. Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM. (2011)

    Google Scholar 

  757. Zaremba, W., Sutskever, I.: Reinforcement Learning Neural Turing Machines. (2015)

    Google Scholar 

  758. Hebb, D.: The Organization of Behaviour. Wiley, New York (1949)

    Google Scholar 

  759. Liefeng, B., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. CVPR. (2011)

    Google Scholar 

  760. Ivakhnenko, G.A., Cerda R.: Inductive Self-Organizing GMDH Algorithms for Complex Systems Modeling and Forecasting, http://www.gmdh.net/articles/index.html, see the general GMDH website for several other resources, http://www.gmdh.net

  761. The review of problems solvable by algorithms of the group method of data handling. Pattern Recogn. Image Anal. (1995), www.gmdh.net/articles/

  762. Ladislav, Z.: Learning simple dependencies by polynomial neural network. J. Inform. Contr. Manag. Syst. 8(3), (2010)

    Google Scholar 

  763. Liefeng, B., Sminchisescu, C.: Efficient match kernel between sets of features for visual recognition. NIPS. (2009)

    Google Scholar 

  764. Julesz, B.: Textons, the elements of texture perception and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  765. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. IJCV. (2007)

    Google Scholar 

  766. Lazebnik, S., Schmid, C., Ponce, J.: A maximum entropy framework for part-based texture and object recognition. IEEE CV. (2005)

    Google Scholar 

  767. Lampert, C.H.: Kernel methods in computer vision. Found. Trends Comput. Graph. Vis. 4(3), 193–285 (2009)

    Article  MathSciNet  Google Scholar 

  768. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. ICCV. (2005)

    Google Scholar 

  769. Youngmin, C., Saul, L.K.: Kernel methods for deep learning. NIPS. (2009)

    Google Scholar 

  770. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. (2009)

    Google Scholar 

  771. Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. Int. Conf. Comput. Vis. (2007)

    Google Scholar 

  772. Klaus-Robert, M., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE TNN. (2001)

    Google Scholar 

  773. Nilsback, M.-E., Zisserman, A.: A visual vocabulary for flower classification. In: CVPR. (2006)

    Google Scholar 

  774. Liefeng, B., Ren, X., Fox, D., Kernel descriptors for visual recognition. NIPS. (2010)

    Google Scholar 

  775. Boswell, D.: Introduction to Support Vector Machines. (2002)

    Google Scholar 

  776. Radu Tudor, I., Popescu, M., Grozea, C.: Local learning to improve bag of visual words model for facial expression recognition. ICML. (2013)

    Google Scholar 

  777. Haussler. D.: Convolution kernels on discrete structures. Tech. Rep. (1999)

    Google Scholar 

  778. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Asilomar Conf. Signals Syst. Comput. (1993)

    Google Scholar 

  779. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  780. Bruna, J., Mallat, S.: Invariant Scattering Convolution Networks. (2012)

    Google Scholar 

  781. Wonmin, B., Breuel, T.M., Raue, F., Liwicki, M.: Scene labeling with LSTM recurrent neural networks. CVPR. (2015)

    Google Scholar 

  782. Du, Y., Wei, W., Liang, W.: Hierarchical recurrent neural network for skeleton based action recognition. CVPR. (2015)

    Google Scholar 

  783. Jianchao, Y., Yu, K., Lv, F., Huang, Yihong Gong, T.: Locality-constrained Linear Coding for image classification. CVPR (2001) Jinjun Wang Akiira Media Syst., Palo Alto, CA, USA

    Google Scholar 

  784. Reubold, J.: Kernel descriptors in comparison with hierarchical matching pursuit. Seminar Thesis, Proceedings of the Robot Learning Seminar, (2010)

    Google Scholar 

  785. John, S.-T., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, (2004)

    Google Scholar 

  786. Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat.

    Google Scholar 

  787. Rojas, R: Neural Networks—A Systematic Introduction, Springer, (1996)

    Google Scholar 

  788. Teknomo, K.: Support Vector Machines Tutorial

    Google Scholar 

  789. Vladimir, C., Mulier, F.M.: Learning from Data: Concepts, Theory, and Methods, 2nd ed., Wiley, (2007)

    Google Scholar 

  790. Dan, C., Meier, U., Schmidhuber, J.: Multi-column Deep Neural Networks for Image Classification. CVPR. (2012)

    Google Scholar 

  791. Amnon, S., Hazan, T.: Algebraic set kernels with application to inference over local image representations. (2005)

    Google Scholar 

  792. Gehler, P, Nowozin, S.: On feature combination for multiclass object classification. CVPR. (2009)

    Google Scholar 

  793. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. JMLR. (2004)

    Google Scholar 

  794. Mairal, J., Koniusz, P., Harchaoui, Z., Schmid, C.: Convolutional kernel networks. NIPS. (2009)

    Google Scholar 

  795. Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23, 969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  796. Kai, Y., Lin, Y., Lafferty, J.: Learning image representations from the pixel level via hierarchical sparse coding. CVPR. (2011)

    Google Scholar 

  797. Jian, Z.F., Song, L., Yang X.K., Zhang, W.: Sub clustering K-SVD: size variable dictionary learning for sparse representations. ICIP. (2009)

    Google Scholar 

  798. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. (1996)

    Google Scholar 

  799. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 3397–3415, (1993)

    Google Scholar 

  800. Kwon, S., Wang, J., Shim, B.: Multipath matching pursuit. IEEE Trans. Inform. Theor. (2014)

    Google Scholar 

  801. Lloyd, S.P.: Least square quantization in PCM. Bell Telephone Laboratories Paper. Published in journal much later: Lloyd, S.P.: Least squares quantization in PCM, IEEE Trans. Inform. Theor. (1957/1982)

    Google Scholar 

  802. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133(133), 97–178 (1908)

    MATH  Google Scholar 

  803. Mairal, J.: Sparse Coding for Machine Learning, Image Processing and Computer Vision. PhD thesis. Ecole Normale Superieure de Cachan. (2010)

    Google Scholar 

  804. Mairal, J., Sapiro, G., Elad, M.: Multiscale sparse image representation with learned dictionaries. In: IEEE International Conference on Image Processing, San Antonio, Texas, USA, (2007), Oral Presentation

    Google Scholar 

  805. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  806. Mairal, J., Jenatton, R., Obozinski, G., Bach, F.: Learning hierarchical and topographic dictionaries with structured sparsity. In: Proceeding of the SPIE Conference on Wavelets and Sparsity XIV. (2011)

    Google Scholar 

  807. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  808. Ethem, A.: Introduction to Machine Learning, MIT Press, (2004)

    Google Scholar 

  809. Tom, M.: Machine Learning, McGraw Hill, (1997)

    Google Scholar 

  810. LeCun, Y., Chopra, S., Hadsell, R., Huang, F.-J., Ranzato, M.-A.: A Tutorial on Energy-Based Learning, in Predicting Structured Outputs, MIT Press, (2006)

    Google Scholar 

  811. Pursuit, R.R., Zibulevsky, M., Elad, M.: Efficient Implementation of the K-SVD algorithm using Batch Orthogonal Matching. Technical Report—CS Technion, (2008)

    Google Scholar 

  812. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature. (1999)

    Google Scholar 

  813. Logothetis, N.K., Pauls, J., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5(5), 552–563 (1995)

    Article  Google Scholar 

  814. Tarr, M.: News on views: pandemonium revisited. Nat. Neurosci. (1999)

    Google Scholar 

  815. Selfridge, O.G.: Pandemonium: a paradigm for learning. Proceedings of the Symposium on Mechanisation of Thought Processes (1959)

    Google Scholar 

  816. Bülthoff, H., Edelman, S.: Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Natl. Acad. Sci. U. S. A. 89, 60–64 (1992)

    Article  Google Scholar 

  817. Logothetis, N., Pauls, J., Bülthoff, H., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 4, 401–414 (1994)

    Article  Google Scholar 

  818. Tarr, M.: Rotating objects to recognize them: a case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonom Bull. Rev. 2, 55–82 (1995)

    Article  Google Scholar 

  819. Booth, M., Rolls, E.: View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb. Cortex 8, 510–523 (1998)

    Article  Google Scholar 

  820. Kobatake, E., Wang, G., Tanaka, K.: Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998)

    Article  Google Scholar 

  821. Perrett, D., et al.: Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain Res. 86, 159–173 (1991)

    Article  Google Scholar 

  822. Perrett, D.I., Rolls, E.T., Caan, W.: Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982)

    Article  Google Scholar 

  823. Tanaka, K., Saito, H.-A., Fukada, Y. & Moriya, M.: Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66, 170–189

    Google Scholar 

  824. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96, (2014)

    Google Scholar 

  825. Gjoneska, E., Pfenning, A., Mathys, H., Quon, G., Kundage, A., Tsai, L.H., Kellis, M.: Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature (2015), doi: 10.1038/nature14252

    Google Scholar 

  826. Tanaka, K.: Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996)

    Article  Google Scholar 

  827. Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996)

    Article  Google Scholar 

  828. Mutch, J., Lowe, D.: Multiclass object recognition with sparse, localized features. CVPR. (2006)

    Google Scholar 

  829. Serre, R.: Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. CBL Memo. 239 (2004)

    Google Scholar 

  830. Hu, X.-L., Zhang, J.-W., Li, J.-M., Zhang, B.: Sparsity-regularized HMAX for visual recognition. PLOS One. 9(1), (2014)

    Google Scholar 

  831. Charles, C., Kouh, M., Riesenhuber, M., & Poggio, T.: Shape Representation in V4: Investigating Position-Specific Tuning for Boundary Conformation with the Standard Model of Object Recognition. AI Memo 2004-024 (2004)

    Google Scholar 

  832. Christian, T., Thome, N., Cord, M.: HMAX-S: deep scale representation for biologically inspired image categorization. ICIP. (2011)

    Google Scholar 

  833. Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12, 162–168 (2002)

    Article  Google Scholar 

  834. ?Ungerleider, L.G., Haxby, J.V.: “What” and “Where” in the human brain. Curr. Opin. Neurobiol. 4, 157–165a, (1994), National Institute of Mental Health, Bethesda, USA

    Google Scholar 

  835. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. PAMI. (2007)

    Google Scholar 

  836. Mutch, J.: HMAX architecture models slide presentation. (2010)

    Google Scholar 

  837. http://maxlab.neuro.georgetown.edu/hmax/

  838. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: Proceedings of CVPR, (2006)

    Google Scholar 

  839. Florent, P., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. ECCV. (2010)

    Google Scholar 

  840. Giorgos, T., Avrithis, Y., Jégou, H.: To aggregate or not to aggregate: selective match kernels for image search. ICCV. (2013)

    Google Scholar 

  841. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: NIPS, (1999)

    Google Scholar 

  842. Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation. INRIA Rennes, Rennes, France, CVPR. (2010)

    Google Scholar 

  843. Relja, A., Zisserman, A.: All about VLAD. CVPR. (2013)

    Google Scholar 

  844. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. Br. Mach. Vis. Conf. (2011)

    Google Scholar 

  845. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: Proceedings of ECCV, (2010)

    Google Scholar 

  846. van Gemert, J.C., Geusebroek, J.M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Proceedings of ECCV, (2008)

    Google Scholar 

  847. Perronnin, F., Liu, Y., S´anchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. CVPR. (2010)

    Google Scholar 

  848. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Proceedings of ECCV, (2010)

    Google Scholar 

  849. J´egou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)

    Article  Google Scholar 

  850. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE PAMI. (2012)

    Google Scholar 

  851. Hong Lau, K., Tay, Y.H., Lo, F.L.: A HMAX with LLC for visual recognition. CVPR. (2015)

    Google Scholar 

  852. Smith, K.: Brain decoding: reading minds. Nature 502(7472), (2013)

    Google Scholar 

  853. Smith, K.: Mind-reading with a brain scan. Nature (2008)

    Google Scholar 

  854. Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L.: “Automatic differentiation of algorithms” (PDF). J. Comput. Appl. Math. 124(1-2), 171–190 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  855. Plaut, D., Nowlan, S., Hinton, G.: Experiments on Learning by Back Propagation, Carnegie Mellon University, (1986)

    Google Scholar 

  856. Cayley, A.: On the theory of groups, as depending on the symbolic equation θ n = 1. Phil. Mag. 7, (1854)

    Google Scholar 

  857. Cayley, A.: On the theory of groups. Am. J. Math. 11 (1889)

    Google Scholar 

  858. Voytek, B.: Brain metrics. Nature (2013)

    Google Scholar 

  859. Langleben Daniel, D., Dattilio Frank, M.: Commentary: the future of forensic functional brain imaging. J. Am. Acad. Psychiatry Law 36(4), 502–504 (2008)

    Google Scholar 

  860. Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X., Todd Constable, R.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature (2015)

    Google Scholar 

  861. Bergami, M., Masserdotti, G., Temprana, S.G., Motori, E., Eriksson, T.M., Göbel, J., Yang, S.M., Conzelmann, K.-K., Schinder, A.F., Götz, M., Berninger, B.: A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron (2015)

    Google Scholar 

  862. Allen Lee, W.-C., Huang, H., Feng, G., Sanes, J.R., Brown, E.N., So, P.T., Nedivi, E.: Dynamic remodeling of dendritic arbors in gabaergic interneurons of adult visual cortex. PLoS 4(2), e29 (2006)

    Google Scholar 

  863. Wu, Z., Shuran, S., Aditya, K., Fisher, Y., Linguang, Z., Xiaoou, T., Jianxiong, X.: 3D ShapeNets: a deep representation for volumetric shapes. CVPR. (2015)

    Google Scholar 

  864. Xiang, Y., Wongun, C., Yuanqing, L., Silvio, S.: Data-driven 3D voxel patterns for object category recognition. CVPR. (2015)

    Google Scholar 

  865. Papazov, C., Marks, T.K., Jones, M.: Real-time 3D head pose and facial landmark estimation from depth images using triangular surface patch features. CVPR. (2015)

    Google Scholar 

  866. Martinovic, A., Jan, K., Riemenschneider, H., Van Gool, L.: 3D All the way: semantic segmentation of urban scenes from start to end in 3D. CVPR. (2015)

    Google Scholar 

  867. Rock, J., Tanmay, G., Justin, T., JunYoung, G., Daeyun, S., Derek, H.: Completing 3D object shape from one depth image. CVPR. (2015)

    Google Scholar 

  868. Yub, J., Lee, H., Seok Heo, S., Dong Yun, Y., II.: Random tree walk toward instantaneous 3D human pose estimation. CVPR. (2015)

    Google Scholar 

  869. Shape Priors Karimi Mahabadi, R., Hane, C., Pollefeys, M.: Segment based 3D object shape priors. CVPR (2015)

    Google Scholar 

  870. Xiaowei, Z., Spyridon, L., Xiaoyan, H., Kostas, D.: D shape estimation from 2D landmarks: a convex relaxation approach. CVPR (2015)

    Google Scholar 

  871. Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes, arXiv preprint arXiv:1501.03719 (2015)

    Google Scholar 

  872. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. (2015)

    Google Scholar 

  873. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

    Google Scholar 

  874. Romero, A., Nicolas, B., Samira Ebrahimi, K., Antoine, C., Carlo, G., Yoshua, B.: FitNets: hints for thin deep nets. arXiv:1412.6550 [cs], (2014)

    Google Scholar 

  875. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, ACM (2006)

    Google Scholar 

  876. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. (2009)

    Google Scholar 

  877. Nikolaus, M., Eddy, I., Philip H., Philipp F., Daniel C., Alexey D., Thomas B.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, (2016)

    Google Scholar 

  878. Horn, B.K.P.: Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View, MIT DARPA report, (1970)

    Google Scholar 

  879. Mutto, C.D., Zanuttigh, P., Cortelazzo, G.M.: Microsoft Kinect™ Range Camera. Springer, (2014)

    Google Scholar 

  880. Mojsilovic, A.: A method for color naming and description of color composition in images, ICIP, (2002)

    Google Scholar 

  881. van de Weijer, J., Schmid, C., Verbeek, J.: Learning color names from real world images. CVPR, (2007)

    Google Scholar 

  882. Khan, R., Van de Weijer, J., Shahbaz Khan, F., Muselet, D., Ducottet, C., Barat, C.: Discriminative Color Descriptors. CVPR, (2013)

    Google Scholar 

  883. van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. ECCV, (2006)

    Google Scholar 

  884. Sung-Hyauk Cha.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions, IJMMMAS, (see also Duda [826])

    Google Scholar 

  885. Deza, E., Deza, M.M.: Dictionary of Distances, Elsevier, (2006)

    Google Scholar 

  886. Glasner, D., Bagon, S., Irani, M.: Super-Resolution From a Single Image. ICCV, (2009)

    Google Scholar 

  887. Vedaldi, V., Varma, G.M., Zisserman, A.: Multiple Kernels for Object Detection A. (2009)

    Google Scholar 

  888. Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: HOGgles: Visualizing Object Detection Features. ICCV, (2013)

    Google Scholar 

  889. Huang, Y., Nat. Lab. of Pattern Recognition (NLPR); Inst. of Autom.; Beijing, China; Wu, Z., Wang, L., Tan, T., PAMI.: Feature Coding in Image Classification: A Comprehensive Study, (2014)

    Google Scholar 

  890. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Google Scholar 

  891. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.-F.: Imagenet: a large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255. IEEE, 2009

    Google Scholar 

  892. Targ, S., Almeida, D., Lyman K.: Resnet in Resnet: generalizing residual architectures, arXiv: 1603.08029. (2016)

    Google Scholar 

  893. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv: 1602.07261, (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krig, S. (2016). Ground Truth Data, Content, Metrics, and Analysis. In: Computer Vision Metrics. Springer, Cham. https://doi.org/10.1007/978-3-319-33762-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33762-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33761-6

  • Online ISBN: 978-3-319-33762-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics