Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 385 Accesses

Abstract

Over the past twenty years or so, a wealth of cosmological observations—ranging from temperature anisotropies in the cosmic microwave background (CMB) (Ade et al., Planck 2015 results. XIII. Cosmological parameters, 2015, [1]), to supernovae type Ia (SNIa) light curves (Riess et al., Astron J 116:1009–1038, 1998, [2], Perlmutter et al., Astrophys J 517:565–586, 1999, [3]), baryonic acoustic oscillations (BAO) imprinted in the galaxy distribution (Cole et al., Mon Not R Astron Soc 362:505–534, 2005, [4], Eisenstein et al., Astrophys J 633:560–574, 2005, [5]) , galaxy cluster abundances (Allen et al., Annu Rev Astron Astrophys 49:409–470, 2007, [6], Ade et al., Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, 2015, [7]), gravitational lensing (Heymans et al., Mon Not R Astron Soc 427:146–166, 2012, [8], Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments, 2013, [9]), etc.—have established the so-called \(\Lambda \) cold dark matter (\(\Lambda \)CDM) model as the standard theoretical paradigm. This model, which assumes the cosmological principle (statistical homogeneity and isotropy on large scales), can be devided into four main ingredients. These are (i) the standard model of particle physics (SMPP); (ii) cold dark matter (CDM); (iii) a cosmological constant, \(\Lambda \); and (iv) general relativity (GR) as the theory of gravity. Next, we briefly discuss each of these in turn (for a more detailed introduction to basic cosmology and the establishment of the \(\Lambda \)CDM model see e.g. the textbooks by Liddle (An introduction to modern cosmology. Wiley, New York, 2003, [10]), Dodelson (Modern cosmology. Academic Press, Amsterdam, 2003, [11]) and Amendola and Tsujikawa (Theory and observations. Cambridge University Press, Cambridge, 2003, [12]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is actually incorrect as electrons are leptons. However, in the literature the word baryons is used to denote electrons as well, which is why we do the same here.

  2. 2.

    Since the coincidence problem is linked to our existence as cosmological observers, there have been attempts to solve this problem using anthropic considerations [2830]. The argument is that, for instance, life as we know it could only appear after the first galaxies, stars and planets have formed, and therefore we are living soon after the time the Universe became habitable, which would not be that much of a “coincidence”.

  3. 3.

    It is important to stress, however, that modified gravity does not explain the fine tuning problem of \(\Lambda \). Nevertheless, the problem gets relaxed since, if there is now an alternative explanation for dark energy, then the value of \(\Lambda \) can be cancelled exactly, which is easier to motivate (e.g. by some symmetry principle or scenarios of degravitation of \(\Lambda \) [38, 39]) than a case of extreme fine tuning.

  4. 4.

    To the reader less familiar with variational calculus, an action S is an integral over the whole spacetime of the Lagrangian density \(\mathcal {L}\) of a model. The equations of motion for a given physical field that enters the model are obtained from the constrain \(\delta S = 0\), where \(\delta S\) is the variation of S w.r.t. that field. The action is thus a more compact way to describe the physics of a model.

  5. 5.

    In the literature, one often encounters this criterion being described as the amplitude of the matter density fluctuations. This is done perhaps to make the explanations simpler, but is inaccurate. For instance, the matter density perturbation between the Sun and the Earth is small (compared to that of each object), but one still requires the fifth force to be screened there. A more correct description would be made in terms of the gravitational potential (or its gradients), which can be sizeable even if there is a vacuum between two massive bodies.

  6. 6.

    This is precisely what happens in the case of the Galileon model, as we shall see in Chap. 3.

References

  1. Ade PAR et al (2015) Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589

  2. Riess AG et al (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J 116:1009–1038. arXiv:astro-ph/9805201

    Google Scholar 

  3. Perlmutter S et al (1999) Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys J 517:565–586. arXiv:astro-ph/9812133

  4. Cole S et al (2005) The 2dF galaxy redshift survey: power-spectrum analysis of the final dataset and cosmological implications. Mon Not R Astron Soc 362:505–534. arXiv:astro-ph/0501174

    Google Scholar 

  5. Eisenstein DJ et al (2005) Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J 633:560–574. arXiv:astro-ph/0501171

  6. Allen SW, Evrard AE, Mantz AB (2011) Cosmological parameters from observations of galaxy clusters. Annu Rev Astron Astrophys 49:409–470. arXiv:1103.4829

    Google Scholar 

  7. Ade PAR et al (2015) Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. arXiv:1502.01597

  8. Heymans C, Van Waerbeke L, Miller L, Erben T, Hildebrandt H, Hoekstra H, Kitching TD, Mellier Y, Simon P, Bonnett C, Coupon J, Fu L, Harnois Déraps J, Hudson MJ, Kilbinger M, Kuijken K, Rowe B, Schrabback T, Semboloni E, van Uitert E, Vafaei S, Velander M (2012) CFHTLenS: the Canada-France-Hawaii telescope lensing survey. Mon Not R Astron Soc 427:146–166. arXiv:1210.0032

    Google Scholar 

  9. Heymans C, Grocutt E, Heavens A, Kilbinger M, Kitching TD et al (2013) CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. arXiv:1303:1808

  10. Liddle A (2003) An introduction to modern cosmology. Wiley, New York

    Google Scholar 

  11. Dodelson S (2003) Modern cosmology. Academic Press, Amsterdam

    Google Scholar 

  12. Amendola L, Tsujikawa S (2012) Theory and observations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Gonzalez-Garcia MC, Maltoni M, Salvado J, Schwetz T (2012) Global fit to three neutrino mixing: critical look at present precision. J High Energy Phys 1212:123. arXiv:1209.3023

  14. Kraus Ch, Bornschein B, Bornschein L, Bonn J, Flatt B et al (2005) Final results from phase II of the Mainz neutrino mass search in tritium beta decay. Eur Phys J C40:447–468. arXiv:hep-ex/0412056

  15. Aseev VN et al (2011) An upper limit on electron antineutrino mass from Troitsk experiment. Phys Rev D 84:112003. arXiv:1108.5034

  16. Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390. arXiv:hep-ph/0404175

    Google Scholar 

  17. Drees M, Gerbier G (2012) Mini-review of dark matter: 2012. arXiv:1204.2373

  18. Kormendy J, Knapp GR (eds) (1987) Dark matter in the universe. In: Proceedings of the IAU symposium, Institute for Advanced Study and Princeton University, Princeton, NJ, 24–28 June 1985. IAU symposium, vol 117

    Google Scholar 

  19. Trimble V (1987) Existence and nature of dark matter in the universe. Annu Rev Astron Astrophys 25:425–472

    Article  ADS  Google Scholar 

  20. Begeman KG, Broeils AH, Sanders RH (1991) Extended rotation curves of spiral galaxies - dark haloes and modified dynamics. Mon Not R Astron Soc 249:523–537

    Article  ADS  Google Scholar 

  21. Bahcall NA, Fan X (1998) The most massive distant clusters: determining omega and \(\sigma _8\). Astrophys J 504:1. arXiv:astro-ph/9803277

  22. Clowe D, Bradac M, Gonzalez AH, Markevitch M, Randall SW et al (2006) A direct empirical proof of the existence of dark matter. Astrophys J 648:L109–L113. arXiv:astro-ph/0608407

    Google Scholar 

  23. Frenk CS, White SDM, Davis M (1983) Nonlinear evolution of large-scale structure in the universe. Astrophys J 271:417–430

    Article  ADS  Google Scholar 

  24. Viel M, Becker GD, Bolton JS, Haehnelt MG (2013) Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-forest data. Phys Rev D 88:043502. arXiv:1306.2314

  25. Richard Bond J, Kofman L, Pogosyan D (1996) How filaments are woven into the cosmic web. Nature 380:603–606. arXiv:astro-ph/9512141

    Google Scholar 

  26. Forero-Romero JE, Hoffman Y, Gottloeber S, Klypin A, Yepes G (2009) A dynamical classification of the cosmic web. Mon Not R Astron Soc 396:1815–1824. arXiv:0809.4135

    Google Scholar 

  27. Cautun M, van de Weygaert R, Jones BJT (2013) NEXUS: tracing the cosmic web connection. Mon Not R Astron Soc 429:1286–1308. arXiv:1209.2043

    Google Scholar 

  28. Efstathiou G (1995) An anthropic argument for a cosmological constant. Mon Not R Astron Soc 274:L73–L76

    Article  ADS  Google Scholar 

  29. Barreira A, Avelino PP (2011) Anthropic versus cosmological solutions to the coincidence problem. Phys Rev D 83(10):103001. arXiv:1103.2401

  30. Peacock JA (2007) Testing anthropic predictions for lambda and the CMB temperature. Mon Not R Astron Soc 379:1067–1074. arXiv:0705.0898

  31. Will CM (2014) The confrontation between general relativity and experiment. arXiv:1403.7377

  32. Joyce A, Jain B, Khoury J, Trodden M (2014) Beyond the cosmological standard model. arXiv:1407.0059

  33. Clifton T, Ferreira PG, Padilla A, Skordis C (2012) Modified gravity and cosmology. Phys Rep 513:1–189. arXiv:1106.2476

    Google Scholar 

  34. Koyama K (2015) Cosmological tests of gravity. arXiv:1504.04623

  35. Jain B, Zhang P (2008) Observational tests of modified gravity. Phys Rev D 78:063503. arXiv:0709.2375

  36. Jain B, Joyce A, Thompson R, Upadhye A, Battat J et al (2013) Novel probes of gravity and dark energy. arXiv:1309.5389

  37. Berti E, Barausse E, Cardoso V, Gualtieri L, Pani P et al (2015) Testing general relativity with present and future astrophysical observations. arXiv:1501.07274

  38. Dvali G, Hofmann S, Khoury J (2007) Degravitation of the cosmological constant and graviton width. Phys Rev D 76:084006. arXiv:hep-th/0703027

  39. Koyama K (2008) The cosmological constant and dark energy in braneworlds. Gen Rel Grav 40:421–450. arXiv:0706.1557

    Google Scholar 

  40. Zlatev I, Wang L-M, Steinhardt PJ (1999) Quintessence, cosmic coincidence, and the cosmological constant. Phys Rev Lett 82:896–899. arXiv:astro-ph/9807002

    Google Scholar 

  41. Amendola L (2000) Coupled quintessence. Phys Rev D 62(4):043511. arXiv:astro-ph/9908023

  42. Pettorino V, Baccigalupi C (2008) Coupled and extended quintessence: theoretical differences and structure formation. Phys Rev D 77:103003. arXiv:0802.1086

  43. Sotiriou TP, Faraoni V (2010) f(R) theories of gravity. Rev Mod Phys 82:451–497 arXiv:0805.1726

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. De Felice A, Tsujikawa S (2010) f(R) theories. Living Rev Rel 13:3. arXiv:1002.4928

  45. Hu W, Sawicki I (2007) Models of f(R) cosmic acceleration that evade solar-system tests. Phys Rev D 76:064004. arXiv:0705.1158

  46. Brax P, van de Bruck C, Davis A-C, Shaw DJ (2008) f(R) gravity and chameleon theories. Phys Rev D 78:104021. arXiv:0806.3415

  47. Nicolis A, Rattazzi R, Trincherini E (2009) Galileon as a local modification of gravity. Phys Rev D 79:064036

    Article  ADS  MathSciNet  Google Scholar 

  48. Deffayet C, Esposito-Farèse G, Vikman A (2009a) Covariant galileon. Phys Rev D 79:084003

    Article  ADS  Google Scholar 

  49. Babichev E, Deffayet C, Ziour R (2009) k-mouflage gravity. Int J Mod Phys D 18:2147–2154. arXiv:0905.2943

    Google Scholar 

  50. Brax P, Valageas P (2014) K-mouflage cosmology: the background evolution. Phys Rev D 90(2):023507. arXiv:1403.5420

  51. Brax P, Valageas P (2014b) K-mouflage cosmology: formation of large-scale structures. arXiv:1403.5424

  52. Deser S, Woodard RP (2007) Nonlocal cosmology. Phys Rev Lett 99:111301. arXiv:0706.2151

  53. Deser S, Woodard RP (2013) Observational viability and stability of nonlocal cosmology. J Cosmol Astropart Phys 1311:036. arXiv:1307.6639

    Google Scholar 

  54. Woodard RP (2014) Nonlocal models of cosmic acceleration. Found Phys 44:213–233. arXiv:1401.0254

    Google Scholar 

  55. Dvali G, Gabadadze G, Porrati M (2000) 4D gravity on a brane in 5D Minkowski space. Phys Lett B 485:208–214. arXiv:hep-th/0005016

    Google Scholar 

  56. Luty MA, Porrati M, Rattazzi R (2003) Strong interactions and stability in the DGP model. J High Energy Phys 2003(09):029

    Article  MathSciNet  Google Scholar 

  57. Nicolis A, Rattazzi R (2004) Classical and quantum consistency of the DGP model. J High Energy Phys 2004(06):059

    Article  MathSciNet  Google Scholar 

  58. Gorbunov D, Koyama K, Sibiryakov S (2006) More on ghosts in the Dvali-Gabadaze-Porrati model. Phys Rev D 73:044016

    Article  ADS  Google Scholar 

  59. Gregory R, Kaloper N, Myers RC, Padilla A (2007) A new perspective on DGP gravity. J High Energy Phys 0710:069. arXiv:0707.2666

    Google Scholar 

  60. Fang W, Wang S, Hu W, Haiman Z, Hui L et al (2008) Challenges to the DGP model from horizon-scale growth and geometry. Phys Rev D 78:103509. arXiv:0808.2208

  61. Khoury J, Weltman A (2004) Chameleon cosmology. Phys Rev D 69:044026. arXiv:astro-ph/0309411

  62. Khoury J, Weltman A (2004) Chameleon fields: awaiting surprises for tests of gravity in space. Phys Rev Lett 93:171104. arXiv:astro-ph/0309300

  63. Olive KA, Pospelov M (2008) Environmental dependence of masses and coupling constants. Phys Rev D 77:043524. arXiv:0709.3825

  64. Hinterbichler K, Khoury J (2010) Symmetron fields: screening long-range forces through local symmetry restoration. Phys Rev Lett 104:231301. arXiv:1001.4525

  65. Hinterbichler K, Levy A, Matas A (2011) Symmetron cosmology. Phys Rev D 84:103521 arXiv:1107.2112

    Article  ADS  Google Scholar 

  66. Damour T, Gibbons GW, Gundlach C (1990) Dark matter, time-varying G, and a dilaton field. Phys Rev Lett 64:123–126

    Article  ADS  Google Scholar 

  67. Brax P, van de Bruck C, Davis A-C, Shaw D (2010) The dilaton and modified gravity. Phys Rev D 82:063519. arXiv:1005.3735

  68. Brax P, van de Bruck C, Davis A-C, Li B, Shaw DJ (2011) Nonlinear structure formation with the environmentally dependent dilaton. Phys Rev D 83:104026. arXiv:1102.3692

  69. Vainshtein AI (1972) To the problem of nonvanishing gravitation mass. Phys Lett B 39(3):393–394. ISSN 0370-2693

    Google Scholar 

  70. Babichev E, Deffayet C (2013) An introduction to the Vainshtein mechanism. arXiv:1304.7240

    Google Scholar 

  71. Koyama K, Niz G, Tasinato G (2013) Effective theory for Vainshtein mechanism from Horndeski action. arXiv:1305.0279

  72. Brax P, Valageas P (2014c) Small-scale nonlinear dynamics of K-mouflage theories. Phys Rev D 90(12):123521. arXiv:1408.0969

  73. Barreira A, Brax P, Clesse S, Li B, Valageas P (2015) K-mouflage gravity models that pass solar system and cosmological constraints. arXiv:1504.01493

  74. Baker T, Ferreira PG, Skordis C, Zuntz J (2011) Towards a fully consistent parameterization of modified gravity. Phys Rev D 84:124018. arXiv:1107.0491

  75. Baker T, Ferreira PG (2012) The parameterized post-Friedmann framework for theories of modified gravity: concepts, formalism and examples. arXiv:1209.2117

  76. Caldwell R, Cooray A, Melchiorri A (2007) Constraints on a new post-general relativity cosmological parameter. Phys Rev D 76:023507 arXiv:astro-ph/0703375

    Article  ADS  Google Scholar 

  77. Amendola L, Kunz M, Sapone D (2008) Measuring the dark side (with weak lensing). J Cosmol Astropart Phys 0804:013. arXiv:0704.2421

    Google Scholar 

  78. Danielle C, Baker T, Ferreira PG (2015) Exploring degeneracies in modified gravity with weak lensing. arXiv:1501.03509

  79. Dossett JN, Ishak M, Parkinson D, Davis T (2015) Constraints and tensions in testing general relativity from Planck and CFHTLenS including intrinsic alignment systematics. arXiv:1501.03119

  80. Johnson A, Blake C, Dossett J, Koda J, Parkinson D et al (2015) Searching for modified gravity: scale and redshift dependent constraints from galaxy peculiar velocities. arXiv:1504.06885

  81. Bloomfield J, Flanagan ÉÉ, Park M, Watson S (2013) Dark energy or modified gravity? An effective field theory approach. J Cosmol Astropart Phys 8:10 arXiv:1211.7054

    Article  ADS  MathSciNet  Google Scholar 

  82. Gubitosi G, Piazza F, Vernizzi F (2012) The effective field theory of dark energy. arXiv:1210.0201

  83. Bin H, Raveri M, Frusciante N, Silvestri A (2014) Effective field theory of cosmic acceleration: an implementation in CAMB. Phys Rev D 89(10):103530. arXiv:1312.5742

  84. Raveri M, Bin H, Frusciante N, Silvestri A (2014) Effective field theory of cosmic acceleration: constraining dark energy with CMB data. Phys Rev D 90(4):043513. arXiv:1405.1022

  85. Battye RA, Pearson JA (2012) Effective action approach to cosmological perturbations in dark energy and modified gravity. J Cosmol Astropart Phys 1207:019 arXiv:1203.0398

    Article  ADS  Google Scholar 

  86. Battye RA, Pearson JA (2013) Parametrizing dark sector perturbations via equations of state. Phys Rev D 88(6):061301. arXiv:1306.1175

  87. Battye RA, Pearson JA (2014) Computing model independent perturbations in dark energy and modified gravity. J Cosmol Astropart Phys 1403:051. arXiv:1311.6737

    Google Scholar 

  88. Ade PAR et al (2015) Planck 2015 results. XIV. Dark energy and modified gravity. arXiv:1502.01590

  89. Brax P, Davis A-C, Li B, Winther HA (2012a) A unified description of screened modified gravity. arXiv:1203.4812

  90. Brax P, Davis A-C, Li B, Winther HA, Zhao G-B (2012b) Systematic simulations of modified gravity: symmetron and dilaton models. arXiv:1206.3568

    Google Scholar 

  91. Brax P, Davis A-C, Li B, Winther HA, Zhao G-B (2013) Systematic simulations of modified gravity: chameleon models. J Cosmol Astropart Phys 1304:029

    Article  ADS  Google Scholar 

  92. Bin H, Liguori M, Bartolo N, Matarrese S (2013) Parametrized modified gravity constraints after Planck. Phys Rev D 88(12):123514. arXiv:1307.5276

  93. Marchini A, Salvatelli V (2013) Updated constraints from the PLANCK experiment on modified gravity. Phys Rev D 88(2):027502. arXiv:1307.2002

  94. Jain B, Vikram V, Sakstein J (2013) Astrophysical tests of modified gravity: constraints from distance indicators in the nearby universe. Astrophys J 779:39. arXiv:1204.6044

    Google Scholar 

  95. Vikram V, Cabr A, Jain B, VanderPlas JT (2013) Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies. J Cosmol Astropart Phys 1308:020. arXiv:1303.0295

    Google Scholar 

  96. Zhao G-B, Li B, Koyama K (2011) Testing gravity using the environmental dependence of dark matter halos. Phys Rev Lett 107(7):071303. arXiv:1105.0922

  97. Li B, Zhao G-B, Koyama K (2012) Haloes and voids in f(R) gravity. Mon Not R Astron Soc 421:3481–3487. arXiv:1111.2602

    Google Scholar 

  98. Cabré A, Vikram V, Jain Z-B, Koyama K (2012) Astrophysical tests of gravity: a screening map of the nearby universe. J Cosmol Astropart Phys 7:34. arXiv:1204.6046

  99. Li B, Hellwing WA, Koyama K, Zhao G-B, Jennings E, Baugh CM (2013) The non-linear matter and velocity power spectra in f(R) gravity. Mon Not R Astron Soc 428:743–755. arXiv:1206.4317

    Google Scholar 

  100. Hellwing WA, Li B, Frenk CS, Cole S (2013) Hierarchical clustering in chameleon f(R) gravity. Mon Not R Astron Soc 435:2806–2821. arXiv:1305.7486

    Google Scholar 

  101. Taruya A, Nishimichi T, Bernardeau F, Hiramatsu T, Koyama K (2014) Regularized cosmological power spectrum and correlation function in modified gravity models. Phys Rev D 90(12):123515 arXiv:1408.4232

    Article  ADS  Google Scholar 

  102. Shi D, Li B, Han J, Gao L, Hellwing WA (2015) Exploring the liminality: properties of haloes and subhaloes in borderline \(f(R)\) gravity. arXiv:1503.01109

  103. Lombriser L, Koyama K, Li B (2013a) Halo modelling in chameleon theories. arXiv:1312.1292

  104. Gronke M, Llinares C, Mota DF, Winther HA (2015) Halo velocity profiles in screened modified gravity theories. Mon Not R Astron Soc 449:2837. arXiv:1412.0066

    Google Scholar 

  105. Cataneo M, Rapetti D, Schmidt F, Mantz AB, Allen SW et al (2014) New constraints on \(f(R)\) gravity from clusters of galaxies. arXiv:1412.0133

  106. Jennings E, Baugh CM, Li B, Zhao G-B, Koyama K (2012) Redshift space distortions in f(R) gravity. arXiv:1205.2698

  107. Clampitt J, Cai Y-C, Li B (2013) Voids in modified gravity: excursion set predictions. Mon Not R Astron Soc 431:749–766. arXiv:1212.2216

    Google Scholar 

  108. Cai Y-C, Padilla N, Li B (2014a) Testing gravity using cosmic voids. arXiv:1410.1510

  109. Cai Y-C, Li B, Frenk CS, Neyrinck M (2013) The integrated Sachs-Wolfe effect in \(f(R)\) gravity. arXiv:1310.6986

  110. Arnold C, Puchwein E, Springel V (2014) Scaling relations and mass bias in hydrodynamical f(R) gravity simulations of galaxy clusters. Mon Not R Astron Soc 440(1):833–842. arXiv:1311.5560

    Google Scholar 

  111. Arnold C, Puchwein E, Springel V (2015) The Lyman-alpha forest in f(R) modified gravity. Mon Not R Astron Soc 448:2275. arXiv:1411.2600

  112. Lombriser L (2014) Constraining chameleon models with cosmology. Annal Phys 526:259–282. arXiv:1403.4268

    Google Scholar 

  113. Lombriser L, Hu W, Fang W, Seljak U (2009) Cosmological constraints on DGP braneworld gravity with brane tension. Phys Rev D 80(6):063536. arXiv:0905.1112

  114. Schmidt F (2009) Cosmological simulations of normal-branch braneworld gravity. Phys Rev D 80(12):123003. arXiv:0910.0235

  115. Li B, Zhao G-B, Koyama K (2013) Exploring Vainshtein mechanism on adaptively refined meshes. J Cosmol Astropart Phys 1305:023 arXiv:1303.0008

    Article  ADS  MathSciNet  Google Scholar 

  116. Lam TY, Nishimichi T, Schmidt F, Takada M (2012) Testing gravity with the stacked phase space around galaxy clusters. Phys Rev Lett 109(5):051301. arXiv:1202.4501

  117. Zu Y, Weinberg DH, Jennings E, Li B, Wyman M (2013) Galaxy infall kinematics as a test of modified gravity. arXiv:1310.6768

  118. Falck B, Koyama K, Zhao G-B, Li B (2014) The Vainshtein mechanism in the cosmic web. J Cosmol Astropart Phys 1407:058. arXiv:1404.2206

    Google Scholar 

  119. Falck B, Koyama K, Zhao G-B (2015) Cosmic web and environmental dependence of screening: Vainshtein vs. Chameleon. arXiv:1503.06673

  120. Davis A-C, Li B, Mota DF, Winther HA (2012) Structure formation in the symmetron model. Astrophys J 748:61. arXiv:1108.3081

    Google Scholar 

  121. Llinares C, Mota DF (2013) Cosmological simulations of screened modified gravity out of the static approximation: effects on matter distribution. arXiv:1312.6016

  122. Li B, Barrow JD (2011) N-body simulations for coupled scalar field cosmology. Phys Rev D 83:024007. arXiv:1005.4231

  123. Li B, Mota DF, Barrow JD (2011) N-body simulations for extended quintessence models. Astrophys J 728:109 arXiv:1009.1400

    Article  ADS  Google Scholar 

  124. Baldi M, Pettorino V, Robbers G, Springel V (2010) Hydrodynamical N-body simulations of coupled dark energy cosmologies. Mon Not R Astron Soc 403:1684–1702. arXiv:0812.3901

    Google Scholar 

  125. Maccio AV, Quercellini C, Mainini R, Amendola L, Bonometto SA (2004) N-body simulations for coupled dark energy: halo mass function and density profiles. Phys Rev D 69:123516. arXiv:astro-ph/0309671

  126. Penzo C, Macci AV, Baldi M, Casarini L, Oorbe J (2015) Effects of coupled dark energy on the milky way and its satellites. arXiv:1504.07243

  127. Maggiore M, Mancarella M (2014) Non-local gravity and dark energy. Phys Rev D 90:023005. arXiv:1402.0448

  128. Merten J, Meneghetti M, Postman M, Umetsu K, Zitrin A et al (2014) CLASH: the concentration-mass relation of galaxy clusters. arXiv:1404.1376

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Barreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreira, A. (2016). Introduction. In: Structure Formation in Modified Gravity Cosmologies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-33696-1_1

Download citation

Publish with us

Policies and ethics