Extension of PRISM by Synthesis of Optimal Timeouts in Fixed-Delay CTMC

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9681)


We present a practically appealing extension of the probabilistic model checker PRISM rendering it to handle fixed-delay continuous-time Markov chains (fdCTMCs) with rewards, the equivalent formalism to the deterministic and stochastic Petri nets (DSPNs). fdCTMCs allow transitions with fixed-delays (or timeouts) on top of the traditional transitions with exponential rates. Our extension supports an evaluation of expected reward until reaching a given set of target states. The main contribution is that, considering the fixed-delays as parameters, we implemented a synthesis algorithm that computes the epsilon-optimal values of the fixed-delays minimizing the expected reward. We provide a performance evaluation of the synthesis on practical examples.


Transient Analysis Synthesis Algorithm Rate Reward Discretization Bound Expected Reward 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Vojtěch Forejt and David Parker for fruitful discussions. This work is partly supported by the Czech Science Foundation, grant No. P202/12/G061.


  1. 1.
    Brázdil, T., Korenčiak, Ľ., Krčál, J., Novotný, P., Řehák, V.: Optimizing Performance of Continuous-Time Stochastic Systems Using Timeout Synthesis. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 141–159. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Fackrell, M.: Fitting with matrix-exponential distributions. Stoch. Models 21(2–3), 377–400 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    German, R.: Performance Analysis of Communication Systems with Non-markovian Stochastic Petri Nets. Wiley, New York (2000)zbMATHGoogle Scholar
  4. 4.
    Guet, C.C., Gupta, A., Henzinger, T.A., Mateescu, M., Sezgin, A.: Delayed continuous-time Markov chains for genetic regulatory circuits. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 294–309. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Haddad, S., Mokdad, L., Moreaux, P.: A new approach to the evaluation of non Markovian stochastic Petri nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 221–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)CrossRefGoogle Scholar
  7. 7.
    Korenčiak, Ľ., Krčál, J., Řehák, V.: Dealing with zero density using piecewise phase-type approximation. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol. 8721, pp. 119–134. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Korenčiak, Ľ., Řehák, V., Farmadin, A.: Extension of PRISM by synthesis of optimal timeouts in fdCTMC. CoRR abs/1603.03252 (2016)Google Scholar
  9. 9.
    Krčál, J.: Formal analysis of discrete-event systems with hard real-time bounds. Ph.D. thesis, Faculty of Informatics, Masaryk University, Brno (2014)Google Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lindemann, C.: An improved numerical algorithm for calculating steady-state solutions of deterministic and stochastic Petri net models. Perform. Eval. 18(1), 79–95 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Neuts, M.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The Johns Hopkins University Press, Baltimore (1981)zbMATHGoogle Scholar
  13. 13.
    Puterman, M.: Markov Decision Processes. Wiley, New York (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Qiu, Q., Wu, Q., Pedram, M.: Stochastic modeling of a power-managed system: construction and optimization. In: ISLPED, pp. 194–199. ACM Press (1999)Google Scholar
  15. 15.
    Xie, W., Sun, H., Cao, Y., Trivedi, K.S.: Optimal webserver session timeout settings for web users. In: Computer Measurement Group Conferenceries, pp. 799–820 (2002)Google Scholar
  16. 16.
    Zimmermann, A.: Applied restart estimation of general reward measures. In: RESIM, pp. 196–204 (2006)Google Scholar
  17. 17.
    Zimmermann, A.: Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In: ICST, pp. 54–63. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations