SmartCity 360 2016, SmartCity 360 2015: Smart City 360° pp 66-77 | Cite as

Privacy-Enhanced Android for Smart Cities Applications

  • Matthew Lepinski
  • David Levin
  • Daniel McCarthy
  • Ronald Watro
  • Michael Lack
  • Daniel Hallenbeck
  • David SlaterEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 166)


Many Smart Cities applications will collect data from and otherwise interact with the mobile devices of individual users. In the past, it has been difficult to assure users that smart applications will protect their private data and use the data only for the application’s intended purpose. The current paper describes a plan for developing Privacy-Enhanced Android, an extension of the current Android OS with new privacy features based on homomorphic and functional encryption and Secure Multiparty Computation. Our goal is to make these advances in privacy-preserving technologies available to the mobile developer community, so that they can be broadly applied and enable the impactful social utility envisioned by Smart Cities.


Privacy Cyber security Encryption Android Smart cities 


  1. 1.
  2. 2.
    US Defense Advanced Research Projects Agency: Brandeis, Retrieved 30 June 2015
  3. 3.
    Yao, A.C.: Protocols for secure computations. In: FOCS, 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164. doi: 10.1109/SFCS.1982.88
  4. 4.
    Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on smartphones. In: 6th USENIX Workshop on Hot Topics in Security (HotSec 2011), San Francisco, August 2011Google Scholar
  5. 5.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on the Theory of Computing (STOC), pp. 169–178 (2009)Google Scholar
  6. 6.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Do, Q., Martini, B., Choo, K.-K.R.: Enhancing user privacy on Android mobile devices via permissions removal. In: 2014 47th Hawaii International Conference on System Sciences (HICSS). IEEE (2014)Google Scholar
  8. 8.
    Kelley, P.G., Consolvo, S., Cranor, L.F., Jung, J., Sadeh, N., Wetherall, D.: A conundrum of permissions: installing applications on an android smartphone. In: Blyth, J., Dietrich, S., Camp, L. (eds.) FC 2012. LNCS, vol. 7398, pp. 68–79. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Felt, A.P. et al.: Android permissions: user attention, comprehension, and behavior. In: Proceedings of the Eighth Symposium on Usable Privacy and Security. ACM (2012)Google Scholar
  10. 10.
    Pantel, P., Lin, T., Gamon, M.: Mining entity types from query logs via user intent modeling. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1. Association for Computational Linguistics (2012)Google Scholar
  11. 11.
    Bugiel, S., Heuser, S., Sadeghi, A.-R.: Flexible and fine-grained mandatory access control on android for diverse security and privacy policies. In: Usenix security (2013)Google Scholar
  12. 12.
    Wagner, D.T. et al.: Device analyzer: a privacy-aware platform to support research on the Android ecosystem. In: Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM (2015)Google Scholar
  13. 13.
    Minson, S.E. et al.: Crowdsourced earthquake early warning. Science Advances 1(3), 10 April 2015.
  14. 14.
    Carter, H., Amrutkar, C., Dacosta, I., Traynor, P.: For your phone only: custom protocols for efficient secure function evaluation on mobile devices. Secur. Comm. Netw. 7, 1165–1176. doi: 10.1002/sec.851
  15. 15.
    Carter, H., Mood, B., Traynor, P., Butler, K.: Secure Outsourced Garbled Circuit Evaluation for Mobile Devices. In: Proceedings of the 22nd USENIX Security Symposium, August 2013, Washington, D.C. (2013)Google Scholar
  16. 16.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Peng, H. et al.: Using probabilistic generative models for ranking risks of android apps. In: Proceedings of the 2012 ACM Conference on Computer and Communications security. ACM (2012)Google Scholar
  18. 18.
    Roy, R.S. et al.: Discovering and Understanding Word Level User Intent in Web Search Queries. Web Semantics: Science, Services and Agents on the World Wide Web (2014)Google Scholar
  19. 19.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  • Matthew Lepinski
    • 1
  • David Levin
    • 1
  • Daniel McCarthy
    • 1
  • Ronald Watro
    • 1
  • Michael Lack
    • 2
  • Daniel Hallenbeck
    • 2
  • David Slater
    • 2
    Email author
  1. 1.Raytheon BBN TechnologiesCambridgeUSA
  2. 2.Invincea LabsArlingtonUSA

Personalised recommendations