• Kolumban HutterEmail author
  • Yongqi Wang
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


This chapter is devoted to thermodynamics; first, fundamentals are attacked and, second, a field formulation is presented and explored. Class experience has taught us that thermodynamic fundamentals are difficult to understand for novel readers. Utmost caution is therefore exercised to precisely introduce terminology such as ‘states’, ‘processes’, ‘extensive’, ‘intensive’ and ‘molar state variables’ as well as concepts like ‘adiabatic’, and ‘diathermic walls’, ‘empirical’ and ‘absolute temperature’, ‘equations of state’ and ‘reversible’ and ‘irreversible processes’. The core of this chapter is, however, the presentation of the first and second law of thermodynamics. The first law balances the energies. It states that the time rate of change of the kinetic plus internal energies are balanced by the mechanical power of the stresses and the body forces plus the thermal analogies, which are the flux of heat through the boundary plus the specific radiation referred to as energy supply. This conservation law then leads to the definitions of the caloric equations of state and the definitions of specific heats. The Second Law of Thermodynamics is likely the most difficult to understand and it is introduced here as a balance law for the entropy and states that all physical processes are irreversible. We motivate this law by going from easy and simple systems to more complex systems by generalization and culminate in this tour with the Second Law as the statement that entropy production rate cannot be negative. Examples illustrate the implications in simple physical systems and show where the two variants of entropy principles may lead to different answers.


Reversible/irreversible processes Empirical/absolute temperature First, second law of thermodynamics Thermodynamic states—processes Extensive, intensive, molar state variables Adiabatic/non-adiabatic systems Diathermic wall Thermal equations of state vanderWaals gas Caloric equation of state Specific heats 


  1. 1.
    Baehr, H.: Thermodynamik, 6th edn. Springer, Berlin (1988)CrossRefGoogle Scholar
  2. 2.
    Boltzmann, L.: Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 53, S. 195–220 (19xy)Google Scholar
  3. 3.
    Born, M.: The Born-Einstein Letters. MacMillan, London (1971)Google Scholar
  4. 4.
    Bunstead, H.A., Van Name, R.G. (eds.): The Scientific Papers of J. Willard Gibbs, vol. 2. Dover, New York (1961)Google Scholar
  5. 5.
    Carathéodory, C.: Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909)CrossRefGoogle Scholar
  6. 6.
    Carnot, N.L.S.: Réflections sur la puissance motrice du feu et sur les machines propres à developer cette puissance. Annales Scientifiques de l’ Ecole Normale Supérieures, Sér 2, 393–457 (1872)Google Scholar
  7. 7.
    Carnot, N.S.L.: Reflections on the Motive Power of Heat. Transl: Thurston, Robert Henry (editor and translator). Wiley, New York (1890)Google Scholar
  8. 8.
    Carnot, N.L.S.: Betrachtungen über die bewegende Kraft des Feuers und die zur Entwicklung dieser Kraft geeigneten Maschinen (Übersetzer und Hrsg. Wilhelm Ostwald). Wilhelm Engelmann-Verlag (1892)Google Scholar
  9. 9.
    Clausius, R.: Über die bewegende Kraft der Wärme. Annalen der Physik 79, 368–397, 500–524 (1850)Google Scholar
  10. 10.
    Clausius, R.: Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheoriein. Annalen der Physik und Chemie 93(12), 481–506 (1854)CrossRefGoogle Scholar
  11. 11.
    Clausius, R.: On a modified form of the second fundamental theorem in the mechanical theory of heat. Philos. Mag. 4 12(77), 81–98 (1856)Google Scholar
  12. 12.
    Clausius, R.: Über die Wärmeleitung gasförmiger Körper. Annalen der Physik 115, 1–57 (1862). doi: 10.1002/andp.18621910102 CrossRefGoogle Scholar
  13. 13.
    Clausius, R.: Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik 125, 353–400 (1865). doi: 10.1002/andp.18652010702 CrossRefGoogle Scholar
  14. 14.
    Cropper, W.H.: The Road to Entropy Rudolf Clausius. Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking, pp. 93–105. Oxford University Press, Oxford (2004). ISBN 978-0-19-517324-6Google Scholar
  15. 15.
    Duhem, P., Wiener, P.P.: La Théorie Physique: Son Objet et sa Structure [The Aim and Structure of Physical Theory]. Jules Vuillemin. Princeton University Press, Princeton (1954). ISBN 978-0-691-02524-7Google Scholar
  16. 16.
    Einstein, A.: Investigations on the Theory of the Brownian Movement (1905). Edited with notes by R. Fürth. Dover Publications, New York (1956)Google Scholar
  17. 17.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Volume I: Mainly Mechanics, Radiation, and Heat, 2nd edn. Addison-Wesley, Reading (2005)Google Scholar
  18. 18.
    Gibbs, J.W.: Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics. New York: Dover Publications (1960) [1902]Google Scholar
  19. 19.
    Joule, J.P.: On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis. Philos. Mag. 19, 260 (1841). doi: 10.1080/14786444108650416 Google Scholar
  20. 20.
    Joule, J.P.: On the calorific effects of magneto-electricity, and on the mechanical value of heat. Philos. Mag. 3 23, 263, 347 & 435 (1843). doi: 10.1080/14786444308644766 Google Scholar
  21. 21.
    Joule, J.P.: On the changes of temperature produced by the rarefaction and condensation of air. Philos. Mag. 3 26(174), 369–383 (1845). doi: 10.1080/14786444508645153 Google Scholar
  22. 22.
    Joule, J.P.: ‘On the Mechanical Equivalent of Heat’. Brit. Assoc. Rep., trans. Chemical Sect, p. 31, read before the British Association at Cambridge, June (1845)Google Scholar
  23. 23.
    Joule, J.P.: On the existence of an equivalent relation between heat and the ordinary forms of mechanical power. Philos. Mag. 3 27(179), 205–207 (1845). doi: 10.1080/14786444508645256 Google Scholar
  24. 24.
    Joule, J.P.: On the mechanical equivalent of heat. Philos. Trans. R. Soc. Lond. 140, 61–82 (1850). doi: 10.1098/rstl.1850.0004 CrossRefGoogle Scholar
  25. 25.
    Lieb, E., Yngvarson, J.: The physics and mathematics of the second law of thermodynamics.> cond-mat> arXiv:cond-mat/9708200 (1997)
  26. 26.
    Longley, W.R., Van Name, R.G. (eds.): The collected works of J. Willard Gibbs. New York: Longmans, Green and Company, 2 volumes (1928) Yale University Press, New Haven (1948, 1957)Google Scholar
  27. 27.
    Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)CrossRefGoogle Scholar
  28. 28.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. II. Clarendon Press, Oxford (1873)Google Scholar
  29. 29.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. I. Clarendon Press, Oxford (1873)Google Scholar
  30. 30.
    Maxwell, J.C.: Van der Waals on the continuity of gaseous and liquid states. Nature 10(259), 477–480 (1874). doi: 10.1038/010477a0 CrossRefGoogle Scholar
  31. 31.
    Maxwell, J.C.: On the Stability of the Motion of Saturn’s RingsGoogle Scholar
  32. 32.
    Maxwell, J.C.: An Elementary Treatise on Electricity. Clarendon Press, Oxford (1881)Google Scholar
  33. 33.
    Maxwell, J.C.: Theory of Heat. Longmans Green Co., London (1908)Google Scholar
  34. 34.
    Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell, vol. I. Dover Publication, New York (1890)Google Scholar
  35. 35.
    Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell, vol. II. University Press, Cambridge (1890)Google Scholar
  36. 36.
    Mayer, R.: Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie 43, 233 (1842) Engl. Translation: Mayer, J.R.: Remarks on the forces of inorganic nature. Philos. Mag. 4 24(162), 371–377 (1862)Google Scholar
  37. 37.
    Nernst, W.H.: Über die electromotorischen Kräfte, welche durch den Magnetismus in von einem Wärmestrom durchflossenen Metallplatten geweckt werden. Annalen der Physik 267, 760–789 (1887)CrossRefGoogle Scholar
  38. 38.
    Nernst, W.H.: Über die elektromotorische Wirksamkeit der Jonen. Zeitschrift für Physik u. Chemie 4, 129 (1889)Google Scholar
  39. 39.
    Philibert, J.: One and a half century of diffusion: fick, Einstein, before and beyond. Diffus. Fundam. 4, 6.1–6.19 (2006)Google Scholar
  40. 40.
    Planck, M.: Treatise on Thermodynamics. Ogg, A. (transl.). London: Longmans, Green & Co. (1903)Google Scholar
  41. 41.
    Planck, M.: Über den zweiten Hauptsatz der mechanischen Wärmetheorie. Ackermann, München (1879)Google Scholar
  42. 42.
    Planck, M.: Das Prinzip von der Erhaltung der Energie. Leipzig (1887) nach: Hoffmann: Max Planck.München S. 32 (2008)Google Scholar
  43. 43.
    Planck, M.: Gegen die neue Energetik. Annalen der Physik 57, 72–78 (1896). doi: 10.1002/andp.18962930107 CrossRefGoogle Scholar
  44. 44.
    Pogliani, L., Berberan-Santos, M.-N.: Constantin Carathéodory and the axiomatic thermodynamics. J. Math. Chem. 28, 1–3 (2000)Google Scholar
  45. 45.
    Truesdell, A.C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas, Treated as a Branch of Rational Mechanics, 593 pp. Academic Press, New York (1980)Google Scholar
  46. 46.
    Van der Waals, J.D.: Over de Continuiteit van den Gasen Vloeistoftoestand (On the continuity of the gas and liquid state). Ph.D. thesis, University Leiden, The Netherlands (1873)Google Scholar
  47. 47.
    Wilson, E.B.: Vector Analysis. A Text-book for the Use of Students. Founded upon the Lectures of J.W. Gibbs. Yale University Press, New Haven (1901)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.c/o Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations