Competition for Land-Based Ecosystem Services: Trade-Offs and Synergies

  • Daniel MüllerEmail author
  • Helmut Haberl
  • Lara Esther Bartels
  • Matthias Baumann
  • Marvin Beckert
  • Christian Levers
  • Florian Schierhorn
  • Jana Zscheischler
  • Petr Havlik
  • Patrick Hostert
  • Ole Mertz
  • Pete Smith
Part of the Human-Environment Interactions book series (HUEN, volume 6)


In this chapter, we define, conceptualize, and exemplify competition for ecosystem services derived from land. Competition for land-based ecosystem services arises when utilization of an ecosystem service by one actor reduces the possibility of other actors to use the same or other ecosystem services. Therefore, we focus on trade-offs and synergies between ecosystem services and argue that the functional relationships between the trade-offs are crucial in shaping how land-use competition plays out. We use this conceptualization of competition for land-based ecosystem services as well as the closely related concepts of trade-off and synergies as a framework to interpret the five case studies in this section, which provide a unique and rich overview of land-use competition in terms of actors involved, geographic coverage, spatial scale, and ecosystem services. These studies convey important insights into opportunities and challenges of intervening into competition for land-based resources and can inform efforts to improve land governance.


Governance Complex patterns Interdependencies Scale Land use 



HH gratefully acknowledges funding by Humboldt University’s KOSMOS program, which has allowed him to spend four months in Berlin in 2014. The authors are also grateful to contributions by the EU-FP7 projects VOLANTE (FP7-ENV-2010-265104), HERCULES (FP7-ENV-2013-627), I-REDD+ (FP7-ENV-265286), German Research Foundation (DFG), and the German Federal Ministry of Education and Research (BMBF) (01 LN 1316 A). The research contributes to the Global Land Project (GLP).


  1. Aghion, P., Harris, C., Howitt, P., & Vickers, J. (2001). Competition, imitation and growth with step-by-step innovation. Journal Short Form Workform, 68(3), 467–492. doi: 10.1111/1467-937x.00177.Google Scholar
  2. Agrawal, A., Nepstad, D., & Chhatre, A. (2011). Reducing emissions from deforestation and forest degradation. Annual Review of Environment and Resources, 36(1), 373–396. doi: 10.1146/annurev-environ-042009-094508.CrossRefGoogle Scholar
  3. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA working paper, No. 12-03. FAO, Rome.Google Scholar
  4. Angelsen, A., Brockhaus, M., Kanninen, M., Sills, E., Sunderlin, W. D., Wertz-Kanounnikoff, S., & Abdel Nour, H. O. (2009). Realising REDD+: National strategy and policy options. Center for International Forestry Research (CIFOR), Bogor, Indonesia.Google Scholar
  5. Azqueta, D., & Sotelsek, D. (2007). Valuing nature: From environmental impacts to natural capital. Ecological Economics, 63(1), 22–30.CrossRefGoogle Scholar
  6. Balent, G., Alard, D., Blanfort, V., & Gibon, A. (1998). Activités de pâturage, paysages et biodiversité. Annales de Zootechnie, 47(5–6), 419–429.CrossRefGoogle Scholar
  7. Bennett, E. M., Peterson, G. D., & Gordon, L. J. (2009). Understanding relationships among multiple ecosystem services. Ecology Letters, 12(12), 1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x.CrossRefGoogle Scholar
  8. Birch, L. C. (1957). The meanings of competition. The American Naturalist, 91(856), 5–18. doi: 10.2307/2458507.CrossRefGoogle Scholar
  9. Bromley, D. W. (2009). Formalising property relations in the developing world: The wrong prescription for the wrong malady. Land Use Policy, 26(1), 20–27. doi: 10.1016/j.landusepol.2008.02.003.CrossRefGoogle Scholar
  10. Byerlee, D., & Deininger, K. (2013). Growing resource scarcity and global farmland investment. Annual Review of Resource Economics, 5(1), 13–34. doi: 10.1146/annurev-resource-091912-151849.CrossRefGoogle Scholar
  11. Cain, M. L., Bowman, W. D., & Hacker, S. D. (2008). Ecology. Incorporated: Sinauer Associates.Google Scholar
  12. Cernea, M. M., & Schmidt-Soltau, K. (2006). Poverty risks and national parks: policy issues in conservation and resettlement. World Develepment, 34(10), 1808–1830. doi: 10.1016/j.worlddev.2006.02.008.CrossRefGoogle Scholar
  13. Coase, R. H. (1960). The problem of social cost. Journal of Law and Economics, 3, 1–44.CrossRefGoogle Scholar
  14. Colwell, P. F., & Sirmans, C. F. (1978). Area, time, centrality and the value of urban land. Land Economics, 54(4), 514–519.CrossRefGoogle Scholar
  15. Corbera, E., & Schroeder, H. (2011). Governing and implementing REDD+. Environmental Science & Policy, 14(2), 89–99. doi: 10.1016/j.envsci.2010.11.002.CrossRefGoogle Scholar
  16. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260.CrossRefGoogle Scholar
  17. Cryan, P. M., & Barclay, R. M. R. (2009). Causes of bat fatalities at wind turbines: Hypotheses and predictions. Journal of Mammalogy, 90(6), 1330–1340. doi: 10.1644/09-MAMM-S-076R1.1.CrossRefGoogle Scholar
  18. Dearing, J. A., Wang, R., Zhang, K., Dyke, J. G., Haberl, H., Hossain, M. S., et al. (2014). Safe and just operating spaces for regional social-ecological systems. Global Environmental Chang, 28, 227–238. doi: 10.1016/j.gloenvcha.2014.06.012.CrossRefGoogle Scholar
  19. Delbecq, B. A., Kuethe, T. H., & Borchers, A. M. (2014). Identifying the extent of the urban fringe and its impact on agricultural land values. Land Economics, 90(4), 587–600.CrossRefGoogle Scholar
  20. Dubinin, M., Potapov, P., Lushchekina, A., & Radeloff, V. C. (2010). Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment, 114(8), 1638–1648. doi: 10.1016/j.rse.2010.02.010.CrossRefGoogle Scholar
  21. Eakin, H., DeFries, R., Kerr, S., Lambin, E. F., Liu, J., Peter J., Marcotullio, Messerli, P., Reenberg, A., Ximena, R., Swaffield, S. R., Wicke, B., & Zimmerer, K. (2014). Significance of telecoupling for exploration of land-use change. Strüngmann Forum Reports, Vol. 14. Cambridge, MA: MIT Press.Google Scholar
  22. Erb, K.-H. (2012). How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecological Economics, 76, 8–14. doi: 10.1016/j.ecolecon.2012.02.005.CrossRefGoogle Scholar
  23. Ernstson, H. (2013). The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landscape and Urban Planning, 109(1), 7–17. doi: 10.1016/j.landurbplan.2012.10.005.CrossRefGoogle Scholar
  24. Fischer-Kowalski, M., & Haberl, H. (1993). Metabolism and colonization. Modes of production and the physical exchange between societies and nature. Innovation: The European Journal of Social Science Research, 6(4), 415–442. doi: 10.1080/13511610.1993.9968370.Google Scholar
  25. Fischer-Kowalski, M., & Haberl, H. (2007). Socioecological transitions and global change: Trajectories of social metabolism and land use. London: Edward Elgar Publishing, Incorporated.CrossRefGoogle Scholar
  26. Gause, G. F. (1934). The struggle for existence. Baltimore: The Williams & Wilkins Company.Google Scholar
  27. GEA. (2012). Global energy assessment—Toward a sustainable future. New York, NY, USA and Laxenburg, Austria: Cambridge University Press and International Institute for Applied Systems Analysis.Google Scholar
  28. Guiling, P., Brorsen, B. W., & Doye, D. (2009). Effect of urban proximity on agricultural land values. Land Economics, 85(2), 252–264. doi: 10.3368/le.85.2.252.CrossRefGoogle Scholar
  29. Haase, D., Schwarz, N., Strohbach, M., Kroll, F. & Seppelt, R. (2012). Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle region, Germany. Ecology and Society, 17 (3). doi: 10.5751/ES-04853-170322
  30. Haberl, H. (2015). Competition for land: A sociometabolic perspective. Ecological Economics, 119, 424–431. doi: 10.1016/j.ecolecon.2014.10.002.CrossRefGoogle Scholar
  31. Haberl, H., Mbow, C., Deng, X., Irwin, E. G., Kerr, S., Kuemmerle, T., et al. (2014). Finite Land Resources and Competition. In K. Seto & A. Reenberg (Eds.), Rethinking global land use in an urban era. Cambridge: MIT Press.Google Scholar
  32. Harper, R. J., Okom, A. E. A., Stilwell, A. T., Tibbett, M., Dean, C., George, S. J., et al. (2012). Reforesting degraded agricultural landscapes with Eucalypts: Effects on carbon storage and soil fertility after 26 years. Agriculture, Ecosystems & Environment, 163, 3–13. doi: 10.1016/j.agee.2012.03.013.CrossRefGoogle Scholar
  33. Havlík, P., Veysset, P., Boisson, J.-M., Lherm, M., & Jacquet, F. (2005). Joint production under uncertainty and multifunctionality of agriculture: Policy considerations and applied analysis. European Review of Agricultural Economics, 32(4), 489–515. doi: 10.1093/erae/jbi027.CrossRefGoogle Scholar
  34. Hein, L., van Koppen, K., de Groot, R. S., & van Ierland, E. C. (2006). Spatial scales, stakeholders and the valuation of ecosystem services. Ecological Economics, 57(2), 209–228. doi: 10.1016/j.ecolecon.2005.04.005.CrossRefGoogle Scholar
  35. Homer-Dixon, T. F. (1994). Environmental scarcities and violent conflict: Evidence from cases. International Security, 19(1), 5–40. doi: 10.2307/2539147.CrossRefGoogle Scholar
  36. Homewood, K. M. (2004). Policy, environment and development in African rangelands. Environmental Science & Policy, 7(3), 125–143.CrossRefGoogle Scholar
  37. Hornborg, A., & Jorgensen, A. K. (2010). International trade and environmental justice: Toward a global political ecology. New York: Nova Science Publishers.Google Scholar
  38. Isselstein, J., Jeangros, B., & Pavlu, V. (2005). Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe–A review. Agronomy Research, 3(2), 139–151.Google Scholar
  39. Jaeger, W. K., Plantinga, A. J., & Grout, C. (2012). How has Oregon’s land use planning system affected property values? Land Use Policy, 29(1), 62–72. doi: 10.1016/j.landusepol.2011.05.005.CrossRefGoogle Scholar
  40. Johnson, J. A., Runge, C. F., Senauer, B., Foley, J., & Polasky, S. (2014). Global agriculture and carbon trade-offs. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12342–12347. doi: 10.1073/pnas.1412835111.CrossRefGoogle Scholar
  41. Joppa, L. N., Loarie, S. R., & Pimm, S. L. (2008). On the protection of “protected areas”. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6673–6678.CrossRefGoogle Scholar
  42. Josling, T. (2008). External influences on CAP reforms: An historical perspective. In J. F. M. Swinnen (Ed.), The perfect storm: The political economy of the fischler reforms of the common agricultural policy. Brussels: Centre for European Policy Studies.Google Scholar
  43. Kastner, T., Erb, K.-H., & Haberl, H. (2014). Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environmental Research Letters, 9(3), 034015. doi: 10.1088/1748-9326/9/3/034015.CrossRefGoogle Scholar
  44. Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3465–3472. doi: 10.1073/pnas.1100480108.CrossRefGoogle Scholar
  45. Lemus, R., & Lal, R. (2005). Bioenergy crops and carbon sequestration. Critical Reviews in Plant Sciences, 24(1), 1–21. doi: 10.1080/07352680590910393.CrossRefGoogle Scholar
  46. Lykke, A. M., Kristensen, M. K., & Ganaba, S. (2004). Valuation of local use and dynamics of 56 woody species in the Sahel. Biodiversity and Conservation, 13(10), 1961–1990. doi: 10.1023/B:BIOC.0000035876.39587.1a.CrossRefGoogle Scholar
  47. Macchi, L., Grau, H. R., Zelaya, P. V., & Marinaro, S. (2013). Trade-offs between land use intensity and avian biodiversity in the dry Chaco of Argentina: A tale of two gradients. Agriculture, Ecosystems & Environment, 174, 11–20. doi: 10.1016/j.agee.2013.04.011.CrossRefGoogle Scholar
  48. Massey, D. (2005). For Space. London: SAGE Publications.Google Scholar
  49. Messerli, P., Heinimann, A., Giger, M., Breu, T., & Schönweger, O. (2013). From ‘land grabbing’ to sustainable investments in land: Potential contributions by land change science. Current Opinion in Environmental Sustainability, 5(5), 528–534. doi: 10.1016/j.cosust.2013.03.004.CrossRefGoogle Scholar
  50. Moilanen, A., Anderson, B. J., Eigenbrod, F., Heinemeyer, A., Roy, D. B., Gilling, S., et al. (2011). Balancing alternative land uses in conservation prioritization. Ecological Applications, 21(5), 1419–1426. doi: 10.1890/10-1865.1.CrossRefGoogle Scholar
  51. Moschini, G. (1989). Normal inputs and joint production with allocatable fixed factors. American Journal of Agricultural Economics, 71(4), 1021–1024. doi: 10.2307/1242678.CrossRefGoogle Scholar
  52. Müller, C., Lotze-Campen, H., Huber, V., Popp, A., Svirejeva-Hopkins, A., Krause, M., & Schellnhuber, H. J. (2011). Towards a great land-use transformation? In Ú. O. Spring, C. Mesjasz, J. Grin, et al. (Eds.), Coping with global environmental change, disasters and security: Threats, challenges, vulnerabilities and risks (pp. 23–28). Berlin: Springer.Google Scholar
  53. Müller, D., Sun, Z., Vongvisouk, T., Pflugmacher, D., Xu, J., & Mertz, O. (2014). Regime shifts limit the predictability of land-system change. Global Environmental Change, 28, 75–83. doi: 10.1016/j.gloenvcha.2014.06.003.CrossRefGoogle Scholar
  54. Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D., et al. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4–11. doi: 10.1890/080023.CrossRefGoogle Scholar
  55. OECD. (2001). Multifunctionality: Towards an analytical framework. Organisation for Economic Co-operation and Development (OECD), Paris.Google Scholar
  56. Park, R. E., & Burgess, E. W. (1921). Introduction to the science of sociology. Chicago, IL: The University of Chicago Press.Google Scholar
  57. Pattanayak, S. K., Wunder, S., & Ferraro, P. J. (2010). Show me the money: Do payments supply environmental services in developing countries? Journal of Environmental Economics and Policy. doi: 10.1093/reep/req006.Google Scholar
  58. Petz, K., Alkemade, R., Bakkenes, M., Schulp, C. J. E., van der Velde, M., & Leemans, R. (2014). Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Global Environmental Chaneg, 29, 223–234. doi: 10.1016/j.gloenvcha.2014.08.007.CrossRefGoogle Scholar
  59. Polasky, S., Nelson, E., Camm, J., Csuti, B., Fackler, P., Lonsdorf, E., et al. (2008). Where to put things? Spatial land management to sustain biodiversity and economic returns. Biological Conservation, 141(6), 1505–1524. doi: 10.1016/j.biocon.2008.03.022.CrossRefGoogle Scholar
  60. Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1554), 2959–2971. doi: 10.1098/rstb.2010.0143.CrossRefGoogle Scholar
  61. Ramachandran Nair, P. K., Nair, V. D., Mohan Kumar, B., & Showalter, J. M. (2010). Carbon sequestration in agroforestry systems (Chap. 5). In L. S. Donald (ed) Advances in agronomy (Vol 108, pp. 237–307). New York: Academic Press. doi:10.1016/S0065-2113(10)08005-3.Google Scholar
  62. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8(6), e66428. doi: 10.1371/journal.pone.0066428.CrossRefGoogle Scholar
  63. Rohlf, W. (2010). Introduction to economic reasoning (8th ed.). Boston, MA: Addison-Wesley.Google Scholar
  64. Ruttan, V. W., & Hayami, Y. (1984). Toward a theory of induced institutional innovation. Journal of Development Studies, 20(4), 203–223.CrossRefGoogle Scholar
  65. Sabbi, A., & Salvati, L. (2014). Searching for a downward spiral? Soil erosion risk, agro-forest landscape and socioeconomic conditions in Italian local communities. Land Use Policy, 41, 388–396. doi: 10.1016/j.landusepol.2014.06.023.CrossRefGoogle Scholar
  66. Sakai, Y. (1974). Substitution and expansion effects in production theory: The case of joint production. Journal of Economic Theory, 9(3), 255–274. doi: 10.1016/0022-0531(74)90051-9.CrossRefGoogle Scholar
  67. Schlamadinger, B., Bird, N., Johns, T., Brown, S., Canadell, J., Ciccarese, L., et al. (2007). A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environmental Science & Policy, 10(4), 271–282.CrossRefGoogle Scholar
  68. Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., et al. (2012). Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7687–7692. doi: 10.1073/pnas.1117622109.CrossRefGoogle Scholar
  69. Shapiro, C. (1983). Premiums for high quality products as returns to reputations. The Quarterly Journal of Economics, 98(4), 659–679. doi: 10.2307/1881782.CrossRefGoogle Scholar
  70. Sharkey, W.W. (1982). The theory of natural monopoly. Cambridge: Cambridge University Press.Google Scholar
  71. Sharma, R. K. (2008). Fundamentals of sociology. New Dehli: Atlantic Publishers.Google Scholar
  72. Shumway, C. R., Pope, R. D., & Nash, E. K. (1984). Allocatable fixed inputs and jointness in agricultural production: Implications for economic modeling. American Journal of Agricultural Economics, 66(1), 72–78. doi: 10.2307/1240617.CrossRefGoogle Scholar
  73. Sieferle, R. P., Krausmann, F., Schandl, H., & Winiwarter, V. (2006). Das Ende der Fläche: Zum gesellschaftlichen Stoffwechsel der Industrialisierung. Köln: Böhlau.Google Scholar
  74. Sieferle, R. P., & Osmann, M. (2010). The subterranean forest: Energy systems and the industrial revolution. White Horse Press.Google Scholar
  75. Sikor, T., Auld, G., Bebbington, A. J., Benjaminsen, T. A., Gentry, B. S., Hunsberger, C., Izac, A.-M., Margulis, M. E., Plieninger, T., Schroeder, H., & Upton, C. (2013). Global land governance: From territory to flow? Current Opinion in Environmental Sustainability, 5(5), 522–527. doi:10.1016/j.cosust.2013.06.006.Google Scholar
  76. Sikor, T., & Lund, C. (2009). Access and property: A question of power and authority. Development and Change, 40(1), 1–22. doi: 10.1111/j.1467-7660.2009.01503.x.CrossRefGoogle Scholar
  77. Sikor, T., & Müller, D. (2009). The limits of state-led land reform: An introduction. World Development, 37(8), 1307–1316. doi: 10.1016/j.worlddev.2008.08.010.CrossRefGoogle Scholar
  78. Smith, A. (1778). An inquiry into the nature and causes of the wealth of nations. London: Strahan and Cadell.Google Scholar
  79. Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P., Rounsevell, M., et al. (2010). Competition for land. Philosophical Transactions of Royal Society of London B: Biological Sciences, 365(1554), 2941–2957. doi: 10.1098/rstb.2010.0127.CrossRefGoogle Scholar
  80. Smith, J., Pearce, B. D., & Wolfe, M. S. (2013). Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renewable Agriculture Food Systems, 28(01), 80–92. doi: 10.1017/S1742170511000585.CrossRefGoogle Scholar
  81. Spangenberg, J. H., Görg, C., Truong, D. T., Tekken, V., Bustamante, J. V. & Settele, J. (2014). Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. International Journal of Biodiversity Science, Ecosystem Services & Management, 10(1), 40–53. doi: 10.1080/21513732.2014.884166
  82. Sutherland, R. L., Woodward, J. L., & Maxwell, M. A. (1956). Introductory sociology. J.B. Lippincott Company: Chicago, IL.Google Scholar
  83. Swinnen, J., & Squicciarini, P. (2012). Mixed messages on prices and food security. Science, 335(6067), 405–406. doi: 10.1126/science.1210806.CrossRefGoogle Scholar
  84. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. doi: 10.1073/pnas.1116437108.CrossRefGoogle Scholar
  85. Tyner, W. E. (2008). The US ethanol and biofuels boom: Its origins, current status, and future prospects. BioScience, 58(7), 646–653. doi: 10.1641/b580718.CrossRefGoogle Scholar
  86. Udawatta, R., & Jose, S. (2012). Agroforestry strategies to sequester carbon in temperate North America. Agroforestry Systems, 86(2), 225–242. doi: 10.1007/s10457-012-9561-1.CrossRefGoogle Scholar
  87. Veldkamp, A. (2009). Investigating land dynamics: Future research perspectives. Journal of Land Use Science, 4(1), 5–14.CrossRefGoogle Scholar
  88. West, P., Igoe, J., & Brockington, D. (2006). Parks and peoples: The social impact of protected areas. Annual Review of Anthropology, 35(1), 251–277. doi: 10.1146/annurev.-anthro.35.081705.123308.CrossRefGoogle Scholar
  89. Williamson, C. R. (2010). The two sides of de Soto: Property rights, land titling, and development. In E. Chamlee-Wright (Ed.), The annual proceedings of the wealth and well-being of nations, 2009–2010 (pp. 95–108). Beloit, WI: Beloit College Press.Google Scholar
  90. Wratten, S., Sandhu, H., Cullen, R., & Costanza, R. (2013). Ecosystem services in agricultural and urban landscapes. New york: Wiley.Google Scholar
  91. Wrbka, T., Erb, K.-H., Schulz, N. B., Peterseil, J., Hahn, C., & Haberl, H. (2004). Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy, 21(3), 289–306. doi: 10.1016/j.landusepol.2003.10.012.CrossRefGoogle Scholar
  92. Wu, F., Zhang, D., & Zhang, J. (2012). Will the development of bioenergy in China create a food security problem? Modeling with fuel ethanol as an example. Renewable Energy, 47, 127–134. doi: 10.1016/j.renene.2012.03.039.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel Müller
    • 1
    Email author
  • Helmut Haberl
    • 2
  • Lara Esther Bartels
    • 4
  • Matthias Baumann
    • 5
  • Marvin Beckert
    • 6
  • Christian Levers
    • 5
  • Florian Schierhorn
    • 1
  • Jana Zscheischler
    • 7
  • Petr Havlik
    • 8
  • Patrick Hostert
    • 3
  • Ole Mertz
    • 9
  • Pete Smith
    • 6
  1. 1.Halle (Saale) and IRI THESysLeibniz Institute of Agricultural Development in Transition EconomiesBerlinGermany
  2. 2.Institute of Social EcologyAlpen-Adria UniversityViennaAustria
  3. 3.Department of Geography and IRI THESysHumboldt-Universität Zu BerlinBerlinGermany
  4. 4.Governance & Sustainability LabTrier UniversityTrierGermany
  5. 5.Department of GeographyHumboldt-Universität zu BerlinBerlinGermany
  6. 6.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotland
  7. 7.Institute of Socio-EconomicsLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  8. 8.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  9. 9.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations