Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data, Vol. 964. US Government Printing Office.
Google Scholar
BAGC. (2014). Beira agricultural growth corridor.
Google Scholar
Best, R. H. (1968). Competition for land between rural and urban uses. Land use and resources: Studies in applied geography. A memorial study to Sir Dudley Stamp, 89–100.
Google Scholar
Bourguignon, H. (2006). Enhancing the role of forests in the socio-economic development of forested African countries. International Journal of Forestry Review, 8(1), 126–129. doi:10.1505/ifor.8.1.126.
CrossRef
Google Scholar
Bradley, P., & Dewees, P. (1993). Indigenous woodlands, agricultural production and household economy in the communal areas. World Bank Technical Paper, 63–63.
Google Scholar
Burrough, P. A., & McDonnell, R. A. (1998). Principles of GIS. London: Oxford University Press.
Google Scholar
Campbell, B. M. (1996). The Miombo in transition: Woodlands and welfare in Africa. Cifor.
Google Scholar
Campbell, J. B. (2002). Introduction to remote sensing. Boca Raton: CRC Press.
Google Scholar
Cavendish, W. (2000). Empirical regularities in the poverty-environment relationship of rural households: Evidence from Zimbabwe. World Development, 28(11), 1979–2003.
CrossRef
Google Scholar
Committee on Needs and Research Requirements for Land Change Modeling GSC. (2013). Board on Earth Sciences and Resources, Division on Earth and Life Studies. Advancing land change modeling: Opportunities and research requirements.
Google Scholar
Dewees, P. A., Campbell, B. M., Katerere, Y., Sitoe, A., Cunningham, A. B., Angelsen, A., & Wunder, S. (2010). Managing the Miombo woodlands of southern Africa: policies, incentives and options for the rural poor. Journal of Natural Resources Policy Research, 2(1), 57–73.
CrossRef
Google Scholar
ESA. (2012). BIOMASS, an Earth Explorer to observe forest biomass. Report for Mission Selection: Biomass.
Google Scholar
EUEI. (2012). Mozambique Biomass Energy Strategy.
Google Scholar
FAO. (2005). Global forest resources assessment 2005.
Google Scholar
FAO. (2010a). Global forest land-use change 1990–2005. Global Forest Resources Assessment.
Google Scholar
FAO. (2010b). Global forest resources assessment 2010.
Google Scholar
FAO. (2010c). Global forest resources assessment 2010. Country Report Mozambique.
Google Scholar
FAO. (2013). Analysis of incentives and disincentives for maize in Mozambique.
Google Scholar
Friis, C., Nielsen, J. Ø., Otero, I., Haberl, H., Niewöhner, J., & Hostert, P. (2015). From teleconnection to telecoupling: Taking stock of an emerging framework in land system science. Journal of Land Use Science, 1–23. doi:10.1080/1747423X.2015.1096423
Google Scholar
Garrett, R. D., Lambin, E. F., & Naylor, R. L. (2013). Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy, 31, 385–396. doi:10.1016/j.landusepol.2012.08.002.
CrossRef
Google Scholar
Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. BioScience, 52(2), 143–150. doi:10.1641/0006-3568(2002)052[0143:Pcaudf]2.0.Co;2.
CrossRef
Google Scholar
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. doi:10.1126/science.1244693.
CAS
CrossRef
Google Scholar
Herd, A. R. C. (2007). Exploring the socio-economic role of charcoal and the potential for sustainable production in the Chicale Regulado. Mozambique: University of Edinburgh.
Google Scholar
Houghton, R. A., Boone, R. D., Melillo, J. M., Palm, C. A., Woodwell, G. M., Myers, N., et al. (1985). Net flux of carbon-dioxide from tropical forests in 1980. Nature, 316(6029), 617–620. doi:10.1038/316617a0.
CAS
CrossRef
Google Scholar
Huang, W. L., Sun, G. Q., Dubayah, R., Cook, B., Montesano, P., Ni, W. J., & Zhang, Z. Y. (2013). Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sensing of Environment, 134, 319–332. doi:10.1016/j.rse.2013.03.017.
CrossRef
Google Scholar
IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories.
Google Scholar
JAXA. (2014). New global 25m-resolution PALSAR mosaic and forest/non-forest map (2007–2010)—version 1. http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.html
Kennedy, R. E., Andrefouet, S., Cohen, W. B., Gomez, C., Griffiths, P., Hais, M., et al. (2014). Bringing an ecological view of change to landsat-based remote sensing. Frontiers in Ecology and the Environment, 12(6), 339–346. doi:10.1890/130066.
CrossRef
Google Scholar
Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford: Oxford University Press.
Google Scholar
Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52(1), 19–30. doi:10.1641/0006-3568(2002)052[0019:Lrsfes]2.0.Co;2.
CrossRef
Google Scholar
Lund, H. G. (2012). Definitions of forest, deforestation, afforestation, and reforestation.
Google Scholar
Mitchard, E., Saatchi, S., Lewis, S., Feldpausch, T., Woodhouse, I., Sonké, B., et al. (2011). Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sensing of Environment, 115(11), 2861–2873.
CrossRef
Google Scholar
Mitchard, E. T., Saatchi, S. S., Baccini, A., Asner, G. P., Goetz, S. J., Harris, N., & Brown, S. (2013). Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance and Management.
Google Scholar
Mitchard, E. T. A., Saatchi, S. S., White, L. J. T., Abernethy, K. A., Jeffery, K. J., Lewis, S. L., et al. (2012). Mapping tropical forest biomass with radar and spaceborne LiDAR in Lope National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences, 9(1), 179–191. doi:10.5194/bg-9-179-2012.
CrossRef
Google Scholar
NASA. (2014). Global ecosystem dynamics investigation lidar (GEDI). http://science.nasa.gov/missions/gedi/. Accessed January 3, 2015.
Olander, L. P., Gibbs, H. K., Steininger, M., Swenson, J. J., & Murray, B. C. (2008). Reference scenarios for deforestation and forest degradation in support of REDD: A review of data and methods. Environmental Research Letters, 3(2), 025011.
CrossRef
Google Scholar
Rueda, X., & Lambin, E. F. (2013). Linking globalization to local land uses: How eco-consumers and gourmands are changing the Colombian coffee landscapes. World Development, 41, 286–301. doi:10.1016/j.worlddev.2012.05.018.
CrossRef
Google Scholar
Ryan, C. M., Berry, N. J., & Joshi, N. (2014). Quantifying the causes of deforestation and degradation and creating transparent REDD+ baselines: A method and case study from central Mozambique. Applied Geography, 53, 45–54.
CrossRef
Google Scholar
Sagan, C., Toon, O. B., & Pollack, J. B. (1979). Anthropogenic albedo changes and the earths climate. Science, 206(4425), 1363–1368. doi:10.1126/science.206.4425.1363.
CAS
CrossRef
Google Scholar
Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., et al. (2012). Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences, 109(20), 7687–7692.
CAS
CrossRef
Google Scholar
Shackleton, S., Shackleton, C., Netshiluvhi, T., Geach, B., Balance, A., & Fairbanks, D. (2002). Use patterns and value of savanna resources in three rural villages in South Africa. Economic Botany, 56(2), 130–146.
CrossRef
Google Scholar
Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. (2011). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116. doi:Artn G04021. doi:10.1029/2011jg001708
Snyder, J. H. (1966). A new program for agricultural land use stabilization: The California Land Conservation Act of 1965. Land Economics, 29–41.
Google Scholar
Stedham, B. (2012). Forest carbon stocks in Malawi 2007–10. An interim report to LTS International, Vol. 1. University of Edinburgh.
Google Scholar
Stone, T. A., Houghton, R. A., Melillo, J. M., & Woodwell, G. M. (1983). Deforestation in the Amazon Basin measured by satellite—A release of CO2 to the atmosphere. Biological Bulletin, 165(2), 511.
Google Scholar
Sun, G. Q., Ranson, K. J., Guo, Z., Zhang, Z., Montesano, P., & Kimes, D. (2011). Forest biomass mapping from lidar and radar synergies. Remote Sensing of Environment, 115(11), 2906–2916. doi:10.1016/J.Rse.2011.03.021
Google Scholar
UNFCCC. (2001). Land use, land-use change and forestry decision 11/CP.7.
Google Scholar
UNFCCC. (2006). Reducing emissions from deforestation in developing countries.
Google Scholar
UNFCCC. (2014a). Key decisions relevant for reducing emissions from deforestation and forest degradation in developing countries (REDD+).
Google Scholar
UNFCCC. (2014b). Reporting and accounting of LULUCF activities under the Kyoto Protocol. http://unfccc.int/methods/lulucf/items/4129.php
USGU. (2014). Landsat project description. http://landsat.usgs.gov/about_project_descriptions.php
Wibberley, G. P. (1959). Agriculture and urban growth, a study of the competition for rural land.
Google Scholar
Woodhouse, I. H., Mitchard, E. T. A., Brolly, M., Maniatis, D., & Ryan, C. M. (2012). CORRESPONDENCE: Radar backscatter is not a ‘direct measure’ of forest biomass. Nature Climate Change, 2(8), 556–557.
CrossRef
Google Scholar
Woodwell, G. M., Hobbie, J. E., Houghton, R. A., Melillo, J. M., Moore, B., Peterson, B. J., & Shaver, G. R. (1983). Global deforestation—Contribution to atmospheric carbon-dioxide. Science, 222(4628), 1081–1086. doi:10.1126/science.222.4628.1081.
CAS
CrossRef
Google Scholar
Woodwell, G. M., Houghton, R. A., Stone, T. A., & Park, A. B. (1986). Changes in the area of forests in Rondônia, Amazon Basin, measured by satellite imagery. The changing carbon cycle (pp. 242–257). Berlin: Springer.
CrossRef
Google Scholar