Skip to main content

The Future Is Made. Imagining Feasible Food and Farming Futures in an Unpredictable World

  • Chapter
  • First Online:
Land Use Competition

Part of the book series: Human-Environment Interactions ((HUEN,volume 6))

Abstract

In land system science, the issue of land use competition is often explored in the context of future scenarios of the agro-food system. While land system science shares its research topic with the so-called agro-food studies, there is little communication between these two strands of research. In order to explore the reasons for this communicative divide and how it could be bridged, we first critically examine the ontological foundations of futures studies in land system science, arguing that they (a) tend to have a global and remote, rather than a place-specific perspective, (b) typically consider biophysical constraints via according models and (c) build on an “economistic” understanding of social relations, insofar as complex social relations are represented by an economic model. This makes it difficult to relate the futures studies from land system science to the mostly place-specific, participatory and social science-based perspective that agro-food studies provide. Still, we conclude that while land system science could benefit from a more place-specific and social science perspective, agro-food studies could profit from translating biophysical considerations and scenario thinking into a place-specific and participatory perspective. The chapters in this section show some fruitful approaches, which take up a place-specific perspective, without losing the sight of biophysical constraints as well as cross-scalar interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, M. J., Avilés-Vázquez, K., et al. (2007). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22, 86–108.

    Article  Google Scholar 

  • Badgley, C., & Perfecto, I. (2007). Can organic agriculture feed the world? Renewable Agriculture and Food Systems, 22, 80–86. doi:10.1017/S1742170507001986.

    Article  Google Scholar 

  • Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.

    Article  Google Scholar 

  • Chen, X., Huang, H., Khanna, M., & Önal, H. (2011). Meeting the mandate for biofuels: Implications for land use, food, and fuel prices. In J. S. G. Zivin & J. M. Perloff (Eds.), The intended and unintended effects of US agricultural and biotechnology policies (pp. 223–267). Chicago, MI: University of Chicago Press.

    Google Scholar 

  • Cohen, J. E. (1996). How many people can the earth support?. New York/London: W.W. Norton & Company.

    Google Scholar 

  • Connor, D. J. (2008). Organic agriculture cannot feed the world. Field Crops Research, 106, 187–190.

    Article  Google Scholar 

  • Ehrlich, P. R. (1971). The population crisis: Where we stand. In N. Hinrichs (Ed.), Population, Environment and People. New York: McGraw-Hill.

    Google Scholar 

  • Erb, K.-H., Haberl, H., Krausmann, F., Lauk, C., Plutzar, C., Steinberger, J. K., Müller, C., Bondeau, A., Waha, K., Pollack, G., et al. (2009). Eating the planet: Feeding and fuelling the world sustainably, fairly and humanely: A scoping study. Social Ecology Working Paper, Vienna: IFF Social Ecology.

    Google Scholar 

  • Erb, K.-H., Lauk, C., Kastner, T., Mayer, A., Theurl, M. & Haberl, H. (2016). Exploring the biophysical option space for feeding the world without deforestation. submitted to Nature Communications.

    Google Scholar 

  • FAO. (2011). Food, Agriculture and cities. Challenges of food and nutrition security, agriculture and ecosystem management in an urbanizing world. FAO food for the cities multi-disciplinary initiative position paper, Rome: Food and Agricultural Organization of the United Nations (FAO).

    Google Scholar 

  • Field, C. B., Campbell, J. E., & Lobell, D. B. (2008). Biomass energy: The scale of the potential resource. Trends in Ecology & Evolution, 23, 65–71.

    Article  Google Scholar 

  • Friedman, H. (2005). From colonialism to green capitalism: Social movements and emergence of food regimes. Research in Rural Sociology and Development, 11, 227.

    Article  Google Scholar 

  • Golub, A., Hertel, T., Lee, H.-L., Rose, S., & Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31, 299–319. doi:10.1016/j.reseneeco.2009.04.007.

    Article  Google Scholar 

  • Goodman, D. (1999). Agro-food studies in the “Age of Ecology”: Nature, corporeality, bio-politics. Sociologia Ruralis, 39, 17–38. doi:10.1111/1467-9523.00091.

    Article  Google Scholar 

  • Haberl, H. (2015). Competition for land: A sociometabolic perspective. Ecological Economics, 119, 424–431. doi:10.1016/j.ecolecon.2014.10.002.

    Article  Google Scholar 

  • Haberl, H., Fischer-Kowalski, M., Krausmann, F., Martinez-Alier, J., & Winiwarter, V. (2011). A socio-metabolic transition towards sustainability? Challenges for another great transformation. Sustainable Development, 19, 1–14. doi:10.1002/sd.410.

    Article  Google Scholar 

  • Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, energy, and climate change. Food Policy, 36, S40–S51. doi:10.1016/j.foodpol.2010.11.009.

    Article  Google Scholar 

  • Havlik, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalskä, R., et al. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39, 5690–5702. doi:10.1016/j.enpol.2010.03.030.

    Article  Google Scholar 

  • Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25, 119–133. doi:10.1016/S0961-9534(02)00191-5.

    Article  Google Scholar 

  • Horst, M., & Gaolach, B. (2014). The potential of local food systems in North America: A review of foodshed analyses. Renewable Agriculture and Food Systems, 30, 399–407.

    Article  Google Scholar 

  • Johansson, D. J. A., & Azar, C. (2007). A scenario based analysis of land competition between food and bioenergy production in the US. Climatic Change, 82, 267–291. doi:10.1007/s10584-006-9208-1.

    Article  CAS  Google Scholar 

  • Lapola, D. M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., & Priess, J. A. (2010). Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences, 107, 3388.

    Article  CAS  Google Scholar 

  • Leu, A. (2004). Organic agriculture can feed the world. Acres—A voice for eco-agriculture 34.

    Google Scholar 

  • Marchetti, C. (1979). 1012: A check on the earth-carrying capacity for man. Energy, 4, 1107–1117.

    Article  Google Scholar 

  • McMichael, P. (2012). The land grab and corporate food regime restructuring. The Journal of Peasant Studies, 39, 681–701. doi:10.1080/03066150.2012.661369.

    Article  Google Scholar 

  • Müller, D., & Munroe, D. K. (2014). Current and future challenges in land-use science. Journal of Land Use Science, 9, 133–142. doi:10.1080/1747423X.2014.883731.

    Article  Google Scholar 

  • Murphy, R., Woods, J., Black, M., & McManus, M. (2011). Global developments in the competition for land from biofuels. Food Policy, 36, S52–S61. doi:10.1016/j.foodpol.2010.11.014.

    Article  Google Scholar 

  • Popp, A., Dietrich, J. P., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., et al. (2011). The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters, 6, 034017. doi:10.1088/1748-9326/6/3/034017.

    Article  Google Scholar 

  • Rathmann, R., Szklo, A., & Schaeffer, R. (2010). Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renewable Energy, 35, 14–22. doi:10.1016/j.renene.2009.02.025.

    Article  Google Scholar 

  • Reilly, J., & Paltsev, S. (2009). Biomass energy and competition for land. In T. W. Hertel, S. K. Rose, & R. S. J. Tol (Eds.), Economic analysis of land use in global climate change policy (p. 182). London: Routledge.

    Google Scholar 

  • Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F., et al. (2009). A safe operating space for humanity. Nature, 461, 472–475. doi:10.1038/461472a.

    Article  Google Scholar 

  • Rounsevell, M. D. A., Pedroli, B., Erb, K.-H., Gramberger, M., Busck, A. G., Haberl, H., et al. (2012). Challenges for land system science. Land Use Policy, 29, 899–910. doi:10.1016/j.landusepol.2012.01.007.

    Article  Google Scholar 

  • Sachs, W. (1992). The development dictionary: A guide to knowledge as power. London: Zed Books.

    Google Scholar 

  • Sachs, W. (1993). Global ecology: a new arena of political conflict. London: Zed Books.

    Google Scholar 

  • Schader, C., Muller, A., Scialabba, N., Hecht, J., Isensee, A., Erb, K.-H., Smith, P., Makkar, H., Klocke, P., Leibe, F., Schwegler, P., Stolze, M., Niggli, U., ET AL. (2016). Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of The Royal Society Interface, In press.

    Google Scholar 

  • Sieferle, R. P. (2001). The subterranean forest: Energy systems and the industrial revolution. Isle of Harris, UK: White Horse Press.

    Google Scholar 

  • Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P., Rounsevell, M., et al. (2010). Competition for land. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2941–2957. doi:10.1098/rstb.2010.0127.

    Article  Google Scholar 

  • Sonnino, R. (2013). Local foodscapes: Place and power in the agri-food system. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 63, 2–7. doi:10.1080/09064710.2013.800130.

    Google Scholar 

  • Stehfest, E., Bouwman, L., Vuuren, D. P., Elzen, M. G. J., Eickhout, B., & Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95, 83–102. doi:10.1007/s10584-008-9534-6.

    Article  CAS  Google Scholar 

  • Stehfest, E., van Vuuren, D., Kram, T. & Bouwman, L. (Eds.). (2014). Integrated assessment of global environmental change with IMAGE 3.0: Description and policy applications. Den Hague: PBL Netherlands Environmental Assessment Agency.

    Google Scholar 

  • Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104, 20666–20671. doi:10.1073/pnas.0704119104.

    Article  CAS  Google Scholar 

  • Turner, B. L., & Robbins, P. (2008). Land-change science and political ecology: Similarities, differences, and implications for sustainability science. Annual Review of Environment and Resources, 33, 295–316. doi:10.1146/annurev.environ.33.022207.104943.

    Google Scholar 

  • Verburg, P. H., Crossman, N., Ellis, E. C., Heinimann, A., Hostert, P., Mertz, O., Nagendra, H., Sikor, T., Erb, K.-H., Golubiewski, N., Grau, R., Grove, M., Konaté, S., Meyfroidt, P., Parker, D. C., Chowdhury, R. R., Shibata, H., Thomson, A., Zhen, L., et al. (2015). Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, In press. doi:10.1016/j.ancene.2015.09.004.

    Google Scholar 

  • Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103, 621–638. doi:10.1016/j.agsy.2010.07.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lauk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lauk, C., Lutz, J. (2016). The Future Is Made. Imagining Feasible Food and Farming Futures in an Unpredictable World. In: Niewöhner, J., et al. Land Use Competition. Human-Environment Interactions, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-33628-2_14

Download citation

Publish with us

Policies and ethics