Skip to main content

How the Collapse of the Beef Sector in Post-Soviet Russia Displaced Competition for Ecosystem Services to the Brazilian Amazon

Part of the Human-Environment Interactions book series (HUEN,volume 6)

Abstract

The collapse of the Russian livestock sector triggered widespread agricultural land abandonment in post-Soviet Russia. The beef industry declined in particular, and consequently, Russia became heavily dependent on beef imports, from Europe in the 1990s and from Brazil after 2002. Therefore, Russian demand substantially contributed to the growth of the Brazilian beef sector and fostered widespread agricultural land expansion and deforestation in the Brazilian Amazon. The beef trade from Brazil to Russia was associated with substantial environmental costs in terms of carbon emissions and loss of biodiversity. While the abandoned agricultural land in Russia has become an important terrestrial carbon sink that would be largely diminished by re-cultivation, we argue that increasing agricultural output through re-cultivation or the expansion of grazing within Russia may be desirable from a global perspective, if the high environmental costs of production elsewhere are taken into account.

Keywords

  • Land abandonment
  • Deforestation
  • Soybean
  • Trade-off
  • Carbon sink

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-33628-2_10
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-33628-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5

References

  • Antonova, M., & Zeller, M. (2007). A time series analysis of the beef supply response in Russia: Implications for agricultural sector development policies. Joint IAAE-104th EAAE Seminar, Budapest, Hungary.

    Google Scholar 

  • Arima, E. Y., Richards, P., Walker, R., & Caldas, M. M. (2011). Statistical confirmation of indirect land use change in the Brazilian Amazon. Environmental Research Letters, 6, 024010.

    CrossRef  Google Scholar 

  • Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-Menashe, D., et al. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2, 182–185.

    CAS  CrossRef  Google Scholar 

  • Barona, E., Ramankutty, N., Hyman, G., & Coomes, O. T. (2010). The role of pasture and soybean in deforestation of the Brazilian Amazon. Environmental Research Letters, 5, 024002.

    CrossRef  Google Scholar 

  • Bouwman, A. F., Van der Hoek, K. W., Eickhout, B., & Soenario, I. (2005). Exploring changes in world ruminant production systems. Agricultural Systems, 84, 121–153.

    CrossRef  Google Scholar 

  • Bragina, E. V., Ives, A. R., Pidgeon, A. M., Kuemmerle, T., Baskin, L.M., & Gubar, Y.P., et al. (2015). Rapid declines of large mammal populations after the collapse of the Soviet Union. Conservation Biology, n/a-n/a.

    Google Scholar 

  • Caro, D., LoPresti, A., Davis, S. J., Bastianoni, S., & Caldeira, K. (2014). CH4 and N2O emissions embodied in international trade of meat. Environmental Research Letters, 9, 114005.

    CrossRef  Google Scholar 

  • Cederberg, C., Persson, U. M., Neovius, K., Molander, S., & Clift, R. (2011). Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environmental Science and Technology, 45, 1773–1779.

    CAS  CrossRef  Google Scholar 

  • Csaki, C., & Lerman, Z. (1992). Land reform and farm sector restructuring in the former Soviet Union and Russia. Aula, 7–22.

    Google Scholar 

  • Davis, S. J., Burney, J. A., Pongratz, J., & Caldeira, K. (2014). Methods for attributing land-use emissions to products. Carbon Management, 5, 233–245.

    CAS  CrossRef  Google Scholar 

  • Dyck, J. H., & Nelson, K. E. (2003). Structure of the global markets for meat. United States Department of Agriculture, Economic Research Service.

    Google Scholar 

  • FAO 2014. FAOSTAT data. In: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    CAS  CrossRef  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–853.

    CAS  CrossRef  Google Scholar 

  • Hocquette, J.-F., & Chatellier, V. (2011). Prospects for the European beef sector over the next 30 years. Animal Frontiers, 1, 20–28.

    CrossRef  Google Scholar 

  • Jin, H. J., Skripnitchenko, A., & Koo, W. W. (2004). The effects of the BSE outbreak in the United States on the beef and cattle industry. Center for Agricultural Policy and Trade Studies, Department of Agribusiness and Applied Economics, North Dakota State University.

    Google Scholar 

  • Kaimowitz, D., Mertens, B., Wunder, S., & Pacheco, P. (2004). Hamburger connection fuels Amazon destruction. Bangor, Indonesia: Center for International Forest Research.

    Google Scholar 

  • Karstensen, J., Peters, G. P., & Andrew, R. M. (2013). Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environmental Research Letters, 8, 024005.

    CrossRef  Google Scholar 

  • Kurganova, I., Lopes de Gerenyu, V., Six, J., & Kuzyakov, Y. (2014). Carbon cost of collective farming collapse in Russia. Global Change Biology, 20, 938–947.

    CrossRef  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1626.

    CAS  CrossRef  Google Scholar 

  • Lambin, E. F., Gibbs, H. K., Ferreira, L., Grau, R., Mayaux, P., Meyfroidt, P., et al. (2013). Estimating the world’s potentially available cropland using a bottom-up approach. Global Environmental Change, 23, 892–901.

    CrossRef  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. In Proceedings of the National Academy of Sciences, Vol. 108, pp. 3465–3472.

    Google Scholar 

  • Lathuillière, M. J., Johnson, M. S., Galford, G. L., & Couto, E. G. (2014). Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environmental Research Letters, 9, 074001.

    CrossRef  Google Scholar 

  • Liefert, W. M. (2002). Comparative (dis?) advantage in Russian agriculture. American Journal of Agricultural Economics, 762–767.

    Google Scholar 

  • Liefert, W. (2004). Food security in Russia: Economic growth and rising incomes are reducing insecurity. Food Security Assessment/GFA-15/May.

    Google Scholar 

  • Liefert, W., Liefert, O., Vocke, G., & Allen, E. (2010). Former Soviet Union region to play larger role in meeting world wheat needs. Amber Waves: U.S. Department of Agriculture, Economic Research Service.

    Google Scholar 

  • Liefert, W. M., & Liefert, O. (2012). Russian agriculture during transition: Performance, global impact, and outlook. Applied Economic Perspectives and Policy, 34, 37–75.

    CrossRef  Google Scholar 

  • Lioubimtseva, E., & Henebry, G. (2012). Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world? Frontiers of Earth Science, 6, 157–166.

    CrossRef  Google Scholar 

  • Macedo, M. N., DeFries, R. S., Morton, D. C., Stickler, C. M., Galford, G. L., & Shimabukuro, Y. E. (2012). Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. In Proceedings of the National Academy of Sciences, Vol. 109, pp. 1341–1346.

    Google Scholar 

  • Martin, N. (2014). What is the way forward for protein supply? The European perspective. OCL, 21, D403.

    CrossRef  Google Scholar 

  • McAlpine, C. A., Etter, A., Fearnside, P. M., Seabrook, L., & Laurance, W. F. (2009). Increasing world consumption of beef as a driver of regional and global change: A call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Global Environmental Change, 19, 21–33.

    CrossRef  Google Scholar 

  • Meyfroidt, P., Lambin, E. F., Erb, K.-H., & Hertel, T. W. (2013). Globalization of land use: Distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5, 438–444.

    CrossRef  Google Scholar 

  • Millen, D. D., & Arrigoni, M. D. B. (2013). Drivers of change in animal protein production systems: Changes from ‘traditional’ to ‘modern’ beef cattle production systems in Brazil. Animal Frontiers, 3, 56–60.

    CrossRef  Google Scholar 

  • Moreira, F., & Russo, D. (2007). Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landscape Ecology, 22, 1461–1476.

    CrossRef  Google Scholar 

  • Nepstad, D. C. (2005). Governing the world’s forests. Conserving Biodiversity, 37–52.

    Google Scholar 

  • Nepstad, D. C., Stickler, C. M., & Almeida, O. T. (2006). Globalization of the amazon soy and beef industries: Opportunities for conservation. Conservation Biology, 20, 1595–1603.

    CrossRef  Google Scholar 

  • Osborne, S., & Trueblood, M. A. (2002). Agricultural productivity and efficiency in Russia and Ukraine. Agricultural Economic Report.

    Google Scholar 

  • Pacheco, P. (2012). Soybean and oil palm expansion in South America: A review of main trends and implications. CIFOR Working Paper.

    Google Scholar 

  • Paulino, P., & Duarte, M. (2014). Brazilian beef production. Beef cattle production and trade, Vol. 107.

    Google Scholar 

  • Penov, I. (2004). The use of irrigation water in Bulgaria’s Plovdiv region during transition. Environmental Management, 34, 304–313.

    CrossRef  Google Scholar 

  • Peterson, D. J. (1993). Troubled lands: The legacy of Soviet environmental destruction. Westview Press Inc.

    Google Scholar 

  • Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Global Change Biology, 17, 2415–2427.

    CrossRef  Google Scholar 

  • Prishchepov, A. V., Müller, D., Dubinin, M., Baumann, M., & Radeloff, V. C. (2013). Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy, 30, 873–884.

    CrossRef  Google Scholar 

  • Regmi, A., Deepak, M., Seale Jr, J. L., & Bernstein, J. (2001). Cross-country analysis of food consumption patterns. Changing structure of global food consumption and trade (pp. 14–22).

    Google Scholar 

  • Rey Benayas, J. (2007). Abandonment of agricultural land: An overview of drivers and consequences. CAB reviews: Perspectives in agriculture, veterinary science, nutrition and natural resources, Vol. 2.

    Google Scholar 

  • Richards, P. D., Myers, R. J., Swinton, S. M., & Walker, R. T. (2012). Exchange rates, soybean supply response, and deforestation in South America. Global Environmental Change, 22, 454–462.

    CrossRef  Google Scholar 

  • ROSSTAT 2014. Regions of Russia. Socio-economic Indicators. Russian Federal Service of State Statistics, Moscow, Russia. Available from: http://www.gks.ru (in Russian).

  • Saatchi, S. S., Houghton, R. A., Dos Santos AlvalÁ, R. C., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13, 816–837.

    CrossRef  Google Scholar 

  • Schierhorn, F., Faramarzi, M., Prishchepov, A. V., Koch, F. J., & Müller, D. (2014a). Quantifying yield gaps in wheat production in Russia. Environmental Research Letters, 9, 084017.

    CrossRef  Google Scholar 

  • Schierhorn, F., Müller, D., Beringer, T., Prishchepov, A. V., Kuemmerle, T., & Balmann, A. (2013). Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Global Biogeochemical Cycles, 27, 1175–1185.

    CAS  CrossRef  Google Scholar 

  • Schierhorn, F., Müller, D., Prishchepov, A. V., Faramarzi, M., & Balmann, A. (2014b). The potential of Russia to increase its wheat production through cropland expansion and intensification. Global Food Security, 3, 133–141.

    CrossRef  Google Scholar 

  • Sedik, D. J., Sotnikov, S., & Wiesmann, D. (2003). Food security in the Russian Federation. Food & Agriculture Org.

    Google Scholar 

  • Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk, J. P., Wirth, C., & Crevoisier, C. (2009). Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochemical Cycles, Vol. 23, GB2022.

    Google Scholar 

  • Sieber, A., Kuemmerle, T., Prishchepov, A. V., Wendland, K. J., Baumann, M., Radeloff, V. C., et al. (2013). Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 133, 38–51.

    CrossRef  Google Scholar 

  • Simon, S., & Wiegmann, K. (2009). Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries. Biomass and Bioenergy, 33, 603–609.

    CrossRef  Google Scholar 

  • Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P., & Rounsevell, M., et al. (2010). Competition for land.

    Google Scholar 

  • Staudigel, M. (2011). How (much) do food prices contribute to obesity in Russia? Economics & Human Biology, 9, 133–147.

    CrossRef  Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & Haan, C. D. (2006). Livestock’s long shadow: Environmental issues and options. Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Stillman, S. (2006). Health and nutrition in Eastern Europe and the former Soviet Union during the decade of transition: A review of the literature. Economics & Human Biology, 4, 104–146.

    CrossRef  Google Scholar 

  • Thomé, K. M., Vieira, L. M., & dos Santos, A. C. (2012). International marketing channels for Brazilian beef: Comparison between Russia and the United Kingdom. Journal of East-West Business, 18, 301–320.

    CrossRef  Google Scholar 

  • Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., et al. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59.

    CrossRef  Google Scholar 

  • USDA. (2014). Production, supply and distribution online. Washington DC, USA: US Department of Agriculture, Foreign Agricultural Service.

    Google Scholar 

  • Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., et al. (2014). The future of food demand: understanding differences in global economic models. Agricultural Economics, 45, 51–67.

    CrossRef  Google Scholar 

  • Vieira, L. M., & Traill, W. B. (2008). Trust and governance of global value chains: The case of a Brazilian beef processor. British Food Journal, 110, 460–473.

    CrossRef  Google Scholar 

  • Vuichard, N., Ciais, P., Belelli, L., Smith, P., & Valentini, R. (2008). Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Global Biogeochemical Cycles, 22.

    Google Scholar 

  • Vuichard, N., Ciais, P., & Wolf, A. (2009). Soil carbon sequestration or biofuel production: New land-use opportunities for mitigating climate over abandoned Soviet farmlands. Environmental Science and Technology, 43, 8678–8683.

    CAS  CrossRef  Google Scholar 

  • Wegren, S. K. (1992). Dilemmas of agrarian reform in the Soviet Union. Europe-Asia Studies, 44, 3–36.

    Google Scholar 

  • Wegren, S. K. (2002). Russian agrarian policy under Putin. Post-Soviet Geography & Economics, 43, 26–40.

    Google Scholar 

  • Wegren, S. (2011). Food security and Russia’s 2010 drought. Eurasian Geography and Economics, 52, 140–156.

    CrossRef  Google Scholar 

  • Wegren, S. K. (2014). Human capital and Russia’s agricultural future. Post-Communist Economies, 26, 537–554.

    CrossRef  Google Scholar 

  • Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103, 621–638.

    CrossRef  Google Scholar 

  • Zaks, D. P. M., Barford, C. C., Ramankutty, N., & Foley, J. A. (2009). Producer and consumer responsibility for greenhouse gas emissions from agricultural production—A perspective from the Brazilian Amazon. Environmental Research Letters, 4, 044010.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schierhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schierhorn, F., Gittelson, A.K., Müller, D. (2016). How the Collapse of the Beef Sector in Post-Soviet Russia Displaced Competition for Ecosystem Services to the Brazilian Amazon. In: , et al. Land Use Competition. Human-Environment Interactions, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-33628-2_10

Download citation