Skip to main content

Fault Detection and Isolation with Applications to Vehicle Systems

  • Chapter
  • First Online:
Automotive Air Conditioning

Abstract

This chapter provides solutions to the fault detection and isolation (FDI) problem when the model describing the system behavior is a deterministic continuous-variable system and faults can be modeled as additive signals acting on the process. The solution to this problem leads to a diagnostic system that consists of two parts: a residual generation module and a residual evaluation module. The chapter focuses on two FDI approaches: the observer design method and the nonlinear parity equation method. Illustrative examples on fault diagnosis for a brake-by-wire system and a battery demonstrate the efficacy of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basseville M, Benveniste A (1986) Detection of abrupt changes in signals and dynamical systems. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  2. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and fault- tolerant control. Springer, New York.

    MATH  Google Scholar 

  3. Caccavale F, Villani L (2003) Fault diagnosis and fault tolerance for mechatronic systems: recent advances. Springer, New York.

    Book  MATH  Google Scholar 

  4. Chen J, Patton RJ (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, Boston.

    Book  MATH  Google Scholar 

  5. Clark RN (1975) Detecting instrument malfunctions in control systems. IEEE Transactions on Aerospace and Electronic Systems, 11(4):465–473.

    Article  Google Scholar 

  6. Clark RN (1978) Instrument fault detection. IEEE Transactions on Aerospace and Electronic Systems, 14:456–465.

    Article  Google Scholar 

  7. Clark RN (1978) A simplified instrument failure detection scheme. IEEE Transactions on Aerospace and Electronic Systems, 14:558–563.

    Article  Google Scholar 

  8. Clark RN, Setzer W (1980) Sensor fault detection in a system with random disturbances. IEEE Transactions on Aerospace and Electronic Systems, 16:468–473.

    Article  Google Scholar 

  9. Dey S, Mohon S, Pisu P, Ayalew B (2016) Sensor Fault Detection, Isolation and Estimation in Lithium-ion Batteries. IEEE Transactions in Control Systems Technology, accepted.

    Google Scholar 

  10. Doughty DH, Butler PC, Jungst RG, Roth EP (2002) Lithium battery thermal models. Journal of Power Sources, 110(2):357–363.

    Article  Google Scholar 

  11. Doyle M, Fuller TF, NewmanJ (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical Society, 140(6):1526–1533.

    Google Scholar 

  12. Dubarry M, Vuillaume N, Liaw BY (2009) From single cell model to battery pack simulation for Li-ion batteries. Journal of Power Sources, 186(2):500–507.

    Article  Google Scholar 

  13. Edwards C, Spurgeon SK, Patton RJ (2000) Sliding mode observers for fault detection and isolation. Automatica, 36(4):541–553.

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank PM (1990) Fault diagnosis in dynamic systems using analytical and knowledge- based redundancy survey and some new results. Automatica, 26:459–474.

    Article  MATH  Google Scholar 

  15. Gertler JJ (1998) Fault detection and diagnosis in engineering systems. Marcel Dekker, New York.

    Google Scholar 

  16. Hirschorn R M (1979) Invertibility of nonlinear control systems. Siam Journal of Control and Optimization, 17(2):289–297.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu Y, Yurkovich S, Guezennec Y, Yurkovich BJ (2011) Electro-thermal battery model identification for automotive applications. Journal of Power Sources, 196(1):449–457.

    Article  Google Scholar 

  18. Hwang W, Hah K (2011) Model-based Sensor Fault Detection Algorithm Design for Electro-Mechanical Brake. Proceedings of the, 137(1),14th International IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC)

    Google Scholar 

  19. Hwang W, Huh K (2015) Fault Detection and Estimation for Electromechanical Brake Systems Using Parity Space Approach. Journal of Dynamics system measurement and control-transaction Of the ASME, 137(1), doi: 10.1115/1.4028184.

    Google Scholar 

  20. Isermann R (2006) Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer-Verlag, Berlin.

    Book  Google Scholar 

  21. Johansson A, Bask M, Norlander T (2006) Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty. Automatica, 42:1095–1106.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kapoor K, Jensen F (2015) Indonesia says faulty part, crew action factors in AirAsia crash. Reuters, Reuters Thompson, December 1st.

    Google Scholar 

  23. Korbicz, J, Koscielny J, Kowalczuk Z, Cholewa W (2004) Fault diagnosis: models, artificial intelligence, applications. Springer, New York.

    Book  MATH  Google Scholar 

  24. Krishnaswami V, Rizzoni G (1994) Nonlinear parity equation residual generation for fault detection and Isolation. Proceedings of the IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes-SAFEPROCESS ’94, pp. 317–322, Espoo, Finland.

    Google Scholar 

  25. Krishnaswami V, Luh GC, Rizzoni G (1995) Nonlinear Parity Equation Based Residual Generation For Diagnosis of Automotive Engine faults. Control Engineering Practice, 3(10):1385–1392.

    Article  Google Scholar 

  26. Krishnaswami V (1996) Model based fault detection and isolation in nonlinear dynamic systems. PhD Thesis, The Ohio State University, Columbus, OH.

    Google Scholar 

  27. Liaw BY, Nagasubramanian G, Jungst RG, Doughty DH (2004) Modeling of lithium ion cells:A simple equivalent-circuit model approach. Solid state ionics, 175(1):835–839.

    Google Scholar 

  28. Luenberger DG (1964) Observing the state of a linear system. IEEE Transactions on Military Electronics, 8(2):74–80.

    Article  Google Scholar 

  29. Luenberger DG (1966) Observers for multivariable systems. IEEE Transactions on Automatic Control, 11:190–197.

    Article  Google Scholar 

  30. Luenberger DG (1971) An introduction to observers IEEE Transactions on Automatic Control,16:596–602.

    Google Scholar 

  31. Patton RJ, Frank P, Clark R (1989) Fault diagnosis in dynamic systems: theory and application. Prentice-Hall, NY.

    Google Scholar 

  32. Patton RJ, Clark RN, Frank PM (2000) Issues of fault diagnosis for dynamic systems. Springer-Verlag, London.

    Book  Google Scholar 

  33. Pisu P (2010) Hierarchical model-based fault diagnosis: theoretical results and applications to vehicle systems. VMD publishing, Berlin.

    Google Scholar 

  34. Puig V, Quevedo J (2002) Passive robust fault detection using fuzzy parity equations. Mathematics and Computers in Simulation, 60:193–207.

    Article  MathSciNet  MATH  Google Scholar 

  35. Roberts M, Chhaya T (2011) An Approach to the Safety Design and Development of a Brake-by-Wire Control System. SAE Technical Paper 2011-01-0212, doi:10.4271/2011-01-0212.

    Google Scholar 

  36. Simani S, Fantuzzi C, Patton R (2003)Model-based fault diagnosis in dynamic systems using identification techniques. Springer, New York.

    Book  Google Scholar 

  37. Tan CP, Edwards C (2000) Sliding mode observers for detection and reconstruction of sensor faults. Automatica, 38(10):1815–1821.

    Article  MathSciNet  MATH  Google Scholar 

  38. Utkin V, Guldner J, Shi J (2009) Sliding Mode Control in Electromechanical Systems. CRC Press, Taylor and Francis, London.

    Book  Google Scholar 

  39. Vachtsevanos G, Lewis F, Roemer M, Hess A, Wu B (2006) Intelligent fault diagnosis and prognosis for engineering systems. Wiley, Hoboken, N.J.

    Book  Google Scholar 

  40. Walker JS (2004) Three Mile Island: A Nuclear Crisis in Historical Perspective. Berkeley: University of California Press. ISBN 0-520-23940-7.

    Google Scholar 

  41. Willsky AS (1976) A Survey of Design Methods for Failure Detection in Dynamic Systems. Automatica, 12:601–611, November.

    Google Scholar 

  42. Zhang, Basseville M, Beneviste A (1998) Fault Detection and Isolation in Nonlinear Dynamic Systems: A Combined Input-Output and Local Approach. Automatica, 34(11):1359–1373.

    Article  MATH  Google Scholar 

  43. Zhirabok AN (1999) Parity space approach to fault diagnosis in nonlinear systems. 1999 European Control Conference (ECC), Karlsruhe, pp. 232–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Pisu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pisu, P. (2016). Fault Detection and Isolation with Applications to Vehicle Systems. In: Automotive Air Conditioning. Springer, Cham. https://doi.org/10.1007/978-3-319-33590-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33590-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33589-6

  • Online ISBN: 978-3-319-33590-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics