Comparison Study of Industrial Robots for High-Speed Machining

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The paper presents methodology for comparison of industrial robots used for high-speed machining. Particular attention is paid to the robot accuracy in milling operation and evaluation robot capacity to perform the task with desired precision. In contrast to other works, the robot performance is evaluated using an industrial standard that is based on the distortion of the circular shape. The developed approach is applied to four industrial robots of KUKA family, which have been compared with respect to the machining precision.


Robot-based machining Circularity index Industrial robot Stiffness model Compliance errors Robot comparison 



The work presented in this paper was partially funded by the project FEDER ROBOTEX № 38444, France.


  1. Abele, E., Weigold, M., & Rothenbücher, S. (2007). Modeling and Identification of an industrial robot for machining applications. CIRP Annals—Manufacturing Technology, 56(1), 387–390.CrossRefGoogle Scholar
  2. Ali, M. H., Khidhir, B. A., Ansari, M. N. M., & Mohamed, B. (2013). FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy. HBRC Journal, 9(3), 263–269.CrossRefGoogle Scholar
  3. Araujo, A. C., Mello, G. M., & Cardoso, F. G. (2015). Thread milling as a manufacturing process for API threaded connection: Geometrical and cutting force analysis. Journal of Manufacturing Processes, 18, 75–83.CrossRefGoogle Scholar
  4. Chen, Y., & Dong, F. (2013). Robot machining: Recent development and future research issues. The International Journal of Advanced Manufacturing Technology, 66(9–12), 1489–1497.CrossRefGoogle Scholar
  5. Chen, Y., Gao, J., Deng, H., Zheng, D., Chen, X., & Kelly, R. (2013). Spatial statistical analysis and compensation of machining errors for complex surfaces. Precision Engineering, 37(1), 203–212.CrossRefGoogle Scholar
  6. Cheng, P. J., Tsay, J. T., & Lin, S. C. (1997). A study on instantaneous cutting force coefficients in face milling. International Journal of Machine Tools and Manufacture, 37(10), 1393–1408.CrossRefGoogle Scholar
  7. Devlieg, R. (2010). Expanding the use of robotics in airframe assembly via accurate robot technology. SAE Technical Paper.Google Scholar
  8. Doi, S., & Kato, S. (1955). Chatter vibration of lathe tools. ASME.Google Scholar
  9. Dumas, C., Caro, S., Cherif, M., Garnier, S., & Furet, B. (2012). Joint stiffness identification of industrial serial robots. Robotica, 30(04), 649–659.CrossRefGoogle Scholar
  10. Feng, W. L., Yao, X. D., Azamat, A., & Yang, J. G. (2015). Straightness error compensation for large CNC gantry type milling centers based on B-spline curves modeling. International Journal of Machine Tools and Manufacture, 88, 165–174.CrossRefGoogle Scholar
  11. Guo, Y., Dong, H., & Ke, Y. (2015). Stiffness-oriented posture optimization in robotic machining applications. Robotics and Computer-Integrated Manufacturing, 35, 69–76.CrossRefGoogle Scholar
  12. Klimchik, A., Chablat, D., & Pashkevich, A. (2014a). Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings. Mechanism and Machine Theory, 79, 1–28.CrossRefGoogle Scholar
  13. Klimchik, A., Furet, B., Caro, S., & Pashkevich, A. (2015). Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory, 90, 1–22.CrossRefGoogle Scholar
  14. Klimchik, A., Pashkevich, A., Chablat, D., & Hovland, G. (2013a). Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robotics and Computer-Integrated Manufacturing, 29(2), 385–393.CrossRefGoogle Scholar
  15. Klimchik, A., Pashkevich, A., Wu, Y., Caro, S., & Furet, B. (2012). Design of calibration experiments for identification of manipulator elastostatic parameters. Applied Mechanics and Materials, 162, 161–170.CrossRefGoogle Scholar
  16. Klimchik, A., Wu, Y., Caro, S., Furet, B., & Pashkevich, A. (2014b). Geometric and elastostatic calibration of robotic manipulator using partial pose measurements. Advanced Robotics, 28(21), 1419–1429.CrossRefGoogle Scholar
  17. Klimchik, A., Wu, Y., Dumas, C., Caro, S., Furet, B., & Pashkevich, A. (2013b). Identification of geometrical and elastostatic parameters of heavy industrial robots. In IEEE International Conference on Robotics and Automation (ICRA). Google Scholar
  18. Koenigsberger, F., & Sabberwal, A. J. P. (1961). An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1(1–2), 15–33.CrossRefGoogle Scholar
  19. Kövecses, J., & Angeles, J. (2007). The stiffness matrix in elastically articulated rigid-body systems. Multibody System Dynamics, 18(2), 169–184.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Matsuoka, S.-I., Shimizu, K., Yamazaki, N., & Oki, Y. (1999). High-speed end milling of an articulated robot and its characteristics. Journal of Materials Processing Technology, 95(1–3), 83–89.CrossRefGoogle Scholar
  21. McCutcheon, R., & Pethick, R. (2014). The new hire: How a new generation of robots is transforming manufacturing. Price waterhouse Coopers.Google Scholar
  22. Merchant, M. E. (1945). Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. Journal of Applied Physics, 16(5), 267–275.CrossRefGoogle Scholar
  23. Nagai, K., & Liu, Z. (2008). A systematic approach to stiffness analysis of parallel mechanisms. In IEEE International Conference on Robotics and Automation, 2008 (ICRA 2008). IEEE.Google Scholar
  24. Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing, 29(1), 236–245.CrossRefGoogle Scholar
  25. Pashkevich, A., Klimchik, A., & Chablat, D. (2011). Enhanced stiffness modeling of manipulators with passive joints. Mechanism and Machine Theory, 46(5), 662–679.CrossRefzbMATHGoogle Scholar
  26. Shirase, K., & Altintaş, Y. (1996). Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills. International Journal of Machine Tools and Manufacture, 36(5), 567–584.CrossRefGoogle Scholar
  27. Vosniakos, G.-C., & Matsas, E. (2010). Improving feasibility of robotic milling through robot placement optimisation. Robotics and Computer-Integrated Manufacturing, 26(5), 517–525.CrossRefGoogle Scholar
  28. Wan, M., Pan, W.-J., Zhang, W.-H., Ma, Y.-C., & Yang, Y. (2014). A unified instantaneous cutting force model for flat end mills with variable geometries. Journal of Materials Processing Technology, 214(3), 641–650.CrossRefGoogle Scholar
  29. Weck, M., Altintas, Y., & Beer, C. (1994). CAD assisted chatter-free NC tool path generation in milling. International Journal of Machine Tools and Manufacture, 34(6), 879–891.CrossRefGoogle Scholar
  30. Zargarbashi, S. H. H., Khan, W., & Angeles, J. (2012a). The Jacobian condition number as a dexterity index in 6R machining robots. Robotics and Computer-Integrated Manufacturing, 28(6), 694–699.CrossRefGoogle Scholar
  31. Zargarbashi, S. H. H., Khan, W., & Angeles, J. (2012b). Posture optimization in robot-assisted machining operations. Mechanism and Machine Theory, 51, 74–86.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Innopolis UniversityInnopolisRussia
  2. 2.Institut de Recherches en Communications et en Cybernétique de NantesNantesFrance
  3. 3.Université de NantesNantesFrance
  4. 4.Gébé 2 ProductiqueBoufféréFrance
  5. 5.Ecole des Mines de NantesNantesFrance

Personalised recommendations