Skip to main content

The Two-Dimensional Electron System

  • Chapter
  • First Online:
  • 576 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

At the heart of this thesis are the properties of high-quality two-dimensional electron systems when being exposed to strong magnetic fields and low temperatures. In our case, the 2DES is hosted inside of a GaAs/AlGaAs heterostructure—a system well known for its excellent quality. Details on the sample structure are provided in the first section of this chapter. The remaining sections summarize the basic properties of a 2DES in a perpendicular magnetic field and lay the foundation for the physics discussed in subsequent chapters. Of particular importance is here the integer and fractional quantum Hall effect. Special emphasis is put on the density-modulated phases in the quantum Hall regime as well as the peculiar physics of the second Landau level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    More precisely, the electrochemical potential should be used instead of the Fermi energy at finite temperatures. We neglect this subtlety throughout the thesis in view of the low sample temperatures.

  2. 2.

    Here, as in all other resistance measurements throughout this thesis, a low-frequency lock-in technique was used to improve the signal-to-noise ratio.

  3. 3.

    In some cases, which are not of relevance for this work, it is advantageous to use the von Neumann lattice gauge. Here, the wavefunctions describe a cyclotron motion of electrons centered around points of a von Neumann lattice [21].

  4. 4.

    Côté et al. consider a maximum number of \(n+\)1 electrons per bubble. However, as the \(n+\)1 bubble phase appears around , it is unstable against the formation of a stripe phase [81].

  5. 5.

    In the following, we will focus mainly on the state because of its higher stability and therefore greater experimental relevance. Since the state is considered the particle-hole conjugate of the state, all statements should apply equally to the state.

References

  1. J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  2. J.K. Jain, Composite Fermions (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  3. J. Nübler, Density dependence of the \(\nu =5/2\) fractional quantum Hall effect - Compressibility of a two-dimensional electron system under microwave irradiation. Ph.D. thesis (Eberhard Karls Universität, Tübingen, 2011)

    Google Scholar 

  4. J. Göres, Correlation effects in 2-dimensional electron systems - Composite fermions and electron liquid crystals. Ph.D. thesis (Universität Stuttgart, 2004)

    Google Scholar 

  5. X. Huang, Critical phenomena in bilayer excitonic condensates. Ph.D. thesis (Universität Stuttgart, 2012)

    Google Scholar 

  6. O. Stern, Spin phenomena in the fractional quantum Hall effect: NMR and magnetotransport studies. Ph.D. thesis (Universität Stuttgart, 2005)

    Google Scholar 

  7. N. Freytag, The electron spin polarization in the lowest Landau level. Ph.D. thesis (Université Joseph Fourier, Grenoble, 2001)

    Google Scholar 

  8. C. Dean, A study of the fractional quantum Hall energy gap at half filling. Ph.D. thesis (McGill University, Montréal, 2008)

    Google Scholar 

  9. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, Nextnano: General purpose 3-D simulations. IEEE Trans. Electron Devices 54, 2137 (2007)

    Google Scholar 

  10. V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, M. Dolev, MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 \(\times \) 10\(^6\) cm\(^2\)/Vs. J. Cryst. Growth 311, 1658 (2009)

    Article  ADS  Google Scholar 

  11. R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665 (1978)

    Article  ADS  Google Scholar 

  12. E.H. Hwang, S. Das Sarma, Limit to two-dimensional mobility in modulation-doped GaAs quantum structures: How to achieve a mobility of 100 million. Phys. Rev. B 77, 235437 (2008)

    Google Scholar 

  13. G. Gamez, K. Muraki, \(\nu =5/2\) fractional quantum Hall state in low-mobility electron systems: Different roles of disorder. Phys. Rev. B 88, 075308 (2013)

    Google Scholar 

  14. K.-J. Friedland, R. Hey, H. Kostial, R. Klann, K. Ploog, New concept for the reduction of impurity scattering in remotely doped GaAs quantum wells. Phys. Rev. Lett. 77, 4616 (1996)

    Article  ADS  Google Scholar 

  15. T. Baba, T. Mizutani, M. Ogawa, Elimination of persistent photoconductivity and improvement in Si activation coefficient by Al spatial separation from Ga and Si in Al-Ga-As: Si solid system - a novel short period AlAs/n-GaAs superlattice -. Jpn. J. Appl. Phys. 22, 627 (1983)

    Article  ADS  Google Scholar 

  16. P.M. Mooney, Deep donor levels (DX centers) in III-V semiconductors. J. Appl. Phys. 67, R1 (1990)

    Article  ADS  Google Scholar 

  17. P. Drude, Zur Elektronentheorie der Metalle (I.). Ann. Phys. 306, 566 (1900)

    Article  MATH  Google Scholar 

  18. P. Drude, Zur Elektronentheorie der Metalle (II.). Ann. Phys. 308, 369 (1900)

    Article  MATH  Google Scholar 

  19. E.H. Hall, On a new action of the magnet on electric currents. Am. J. Math. 2, 287 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  21. Z.F. Ezawa, Quantum Hall Effects (World Scientific Publishing Co. Pte. Ltd., Singapore, 2008)

    Book  MATH  Google Scholar 

  22. A.M. White, I. Hinchliffe, P.J. Dean, P.D. Greene, Zeeman spectra of the principal bound exciton in Sn-doped gallium arsenide. Solid State Commun. 10, 497 (1972)

    Article  ADS  Google Scholar 

  23. C. Weisbuch, C. Hermann, Optical detection of conduction-electron spin resonance in GaAs, \({\rm Ga}_{1-{\rm x}}{\rm In}_{{\rm x}}\text{As}\) and \(\text{Ga}_{1-{\rm x}}{\rm Al}_{{\rm x}}{\rm As}\). Phys. Rev. B 15, 816 (1977)

    Article  ADS  Google Scholar 

  24. T.P. Smith, B.B. Goldberg, P.J. Stiles, M. Heiblum, Direct measurement of the density of states of a two-dimensional electron gas. Phys. Rev. Lett. 32, 2696 (1985)

    ADS  Google Scholar 

  25. J.P. Eisenstein, H.L. Stormer, V. Narayanamurti, A.Y. Cho, A.C. Gossard, C.W. Tu, Density of states and de Haas-van Alphen effect in two-dimensional electron systems. Phys. Rev. Lett. 55, 875 (1985)

    Article  ADS  Google Scholar 

  26. V. Mosser, D. Weiss, K. von Klitzing, K. Ploog, G. Weimann, Density of states of GaAs-AlGaAs-heterostructures deduced from temperature dependent magnetocapacitance measurements. Solid State Commun. 58, 5 (1986)

    Article  ADS  Google Scholar 

  27. R.C. Ashoori, R.H. Silsbee, The Landau level density of states as a function of Fermi energy in the two dimensional electron gas. Solid State Commun. 81, 821 (1992)

    Article  ADS  Google Scholar 

  28. A. Potts, R. Shepherd, W.G. Herrenden-Harker, M. Elliott, C.L. Jones, A. Usher, G.A.C. Jones, D.A. Ritchie, E.H. Linfield, M. Grimshaw, Magnetization studies of Landau level broadening in two-dimensional electron systems. J. Phys. Condens. Matter 8, 5189 (1996)

    Article  ADS  Google Scholar 

  29. S. Ilani, J. Martin, E. Teitelbaum, J.H. Smet, D. Mahalu, V. Umansky, A. Yacoby, The microscopic nature of localization in the quantum Hall effect. Nature 427, 328 (2004)

    Article  ADS  Google Scholar 

  30. M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375 (1988)

    Article  ADS  Google Scholar 

  31. R. Landauer, Electrical transport in open and closed systems. Z. Phys. B 68, 217 (1987)

    Article  ADS  Google Scholar 

  32. D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Electrostatics of edge channels. Phys. Rev. B 46, 4026 (1992)

    Article  ADS  Google Scholar 

  33. D.B. Chklovskii, K.A. Matveev, B.I. Shklovskii, Ballistic conductance of interacting electrons in the quantum Hall regime. Phys. Rev. B 47, 605 (1993)

    Article  Google Scholar 

  34. A. Siddiki, R.R. Gerhardts, Incompressible strips in dissipative Hall bars as origin of quantized Hall plateaus. Phys. Rev. B 70, 195335 (2004)

    Article  ADS  Google Scholar 

  35. K. von Klitzing, R. Gerhardts, J. Weis, 25 Jahre Quanten-Hall-Effekt. Phys. J. 4, 37 (2005)

    Google Scholar 

  36. E. Ahlswede, P. Weitz, J. Weis, K. von Klitzing, K. Eberl, Hall potential profiles in the quantum Hall regime measured by a scanning force microscope. Phys. B 298, 562 (2001)

    Article  ADS  Google Scholar 

  37. E. Ahlswede, J. Weis, K. von Klitzing, K. Eberl, Hall potential distribution in the quantum Hall regime in the vicinity of a potential probe contact. Phys. E 12, 165 (2002)

    Article  Google Scholar 

  38. J. Weis, Y.Y. Wei, K. von Klitzing, Single-electron transistor probes two-dimensional electron system in high magnetic fields. Phys. E 3, 23 (1998)

    Google Scholar 

  39. Y.Y. Wei, J. Weis, K. von Klitzing, K. Eberl, Edge strips in the quantum Hall regime imaged by a single-electron transistor. Phys. Rev. Lett. 81, 1674 (1998)

    Article  ADS  Google Scholar 

  40. E. Ahlswede, Potential- und Stromverteilung beim Quanten-Hall-Effekt bestimmt mittels Rasterkraftmikroskopie. Ph.D. thesis (Universität Stuttgart, 2002)

    Google Scholar 

  41. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  42. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  43. W. Pan, J.S. Xia, H.L. Stormer, D.C. Tsui, C. Vicente, E.D. Adams, N.S. Sullivan, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Experimental studies of the fractional quantum Hall effect in the first excited Landau level. Phys. Rev. B 77, 075307 (2008)

    Article  ADS  Google Scholar 

  44. R.B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)

    Google Scholar 

  45. F.D.M. Haldane, Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983)

    Google Scholar 

  46. B.I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984)

    Article  ADS  Google Scholar 

  47. S.M. Girvin, A.H. MacDonald, Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect. Phys. Rev. Lett. 58, 1252 (1987)

    Article  ADS  Google Scholar 

  48. S.C. Zhang, T.H. Hansson, S. Kivelson, Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82 (1989)

    Article  ADS  Google Scholar 

  49. N. Read, Order parameter and Ginzburg-Landau theory for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 86 (1989)

    Article  ADS  Google Scholar 

  50. R.B. Laughlin, Nobel lecture: Fractional quantization. Rev. Mod. Phys. 71, 863 (1999)

    Google Scholar 

  51. B.I. Halperin, Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75 (1983)

    Google Scholar 

  52. H.L. Störmer, The fractional quantum Hall effect, in Nobel Lectures in Physics (1996-2000) (World Scientific Publishing Co. Pte. Ltd., Singapore, 2002), pp. 295–325

    Google Scholar 

  53. V.J. Goldman, B. Su, Resonant tunneling in the quantum Hall regime: Measurement of fractional charge. Science 267, 1010 (1995)

    Google Scholar 

  54. L. Saminadayar, D.C. Glattli, Y. Jin, B. Etienne, Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526 (1997)

    Article  ADS  Google Scholar 

  55. R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Direct observation of a fractional charge. Nature 389, 162 (1997)

    Article  ADS  Google Scholar 

  56. M. Reznikov, R. de Picciotto, T.G. Griffiths, M. Heiblum, V. Umansky, Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238 (1999)

    Article  ADS  Google Scholar 

  57. J. Martin, S. Ilani, B. Verdene, J. Smet, V. Umansky, D. Mahalu, D. Schuh, G. Abstreiter, A. Yacoby, Localization of fractionally charged quasi-particles. Science 305, 980 (2004)

    Article  ADS  Google Scholar 

  58. S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, T. Fennell, Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956 (2009)

    Article  ADS  Google Scholar 

  59. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Magnetic coulomb phase in the spin ice Ho\(_2\)Ti\(_2\)O\(_7\). Science 326, 415 (2009)

    Article  ADS  Google Scholar 

  60. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, R.S. Perry, Dirac strings and magnetic monopoles in the spin ice Dy\(_2\)Ti\(_2\)O\(_7\). Science 326, 411 (2009)

    Article  ADS  Google Scholar 

  61. J. Schlappa, K. Wohlfeld, K.J. Zhou, M. Mourigal, M.W. Haverkort, V.N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.-S. Caux, L. Patthey, H.M. Rønnow, J. van den Brink, T. Schmitt, Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr\(_2\)CuO\(_3\). Nature 485, 82 (2012)

    Article  ADS  Google Scholar 

  62. C. Kim, A.Y. Matsuura, Z.-X. Shen, N. Motoyama, H. Eisaki, S. Uchida, T. Tohyama, S. Maekawa, Observation of spin-charge separation in one-dimensional SrCuO\(_2\). Phys. Rev. Lett. 77, 4054 (1996)

    Article  ADS  Google Scholar 

  63. Y. Jompol, C.J.B. Ford, J.P. Griffiths, I. Farrer, G.A.C. Jones, D. Anderson, D.A. Ritchie, T.W. Silk, A.J. Schofield, Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597 (2009)

    Article  ADS  Google Scholar 

  64. F.D.M. Haldane, E.H. Rezayi, Finite-size studies of the incompressible state of the fractionally quantized Hall effect and its excitations. Phys. Rev. Lett. 54, 237 (1985)

    Article  ADS  Google Scholar 

  65. R. Morf, B.I. Halperin, Monte Carlo evaluation of trial wave functions for the fractional quantized Hall effect: Disk geometry. Phys. Rev. B 33, 2221 (1986)

    Google Scholar 

  66. S.M. Girvin, Particle-hole symmetry in the anomalous quantum Hall effect. Phys. Rev. B 29, 6012 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  67. J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  68. R.L. Willett, M.A. Paalanen, R.R. Ruel, K.W. West, L.N. Pfeiffer, D.J. Bishop, Anomalous sound propagation at \(\nu =1/2\) in a 2D electron gas: Observation of a spontaneously broken translational symmetry? Phys. Rev. Lett. 65, 112 (1990)

    Google Scholar 

  69. R.R. Du, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. West, Experimental evidence for new particles in the fractional quantum Hall effect. Phys. Rev. Lett. 70, 2944 (1993)

    Article  ADS  Google Scholar 

  70. R.R. Du, A.S. Yeh, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. West, Fractional quantum Hall effect around \(\nu = 3/2\): Composite fermions with a spin. Phys. Rev. Lett. 75, 3926 (1995)

    Google Scholar 

  71. R.L. Willett, R.R. Ruel, M.A. Paalanen, K.W. West, L.N. Pfeiffer, Enhanced finite-wave-vector conductivity at multiple even-denominator filling factors in two-dimensional electron systems. Phys. Rev. B 47, 7344 (1993)

    Google Scholar 

  72. R.L. Willett, R.R. Ruel, K.W. West, L.N. Pfeiffer, Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level. Phys. Rev. Lett. 71, 3846 (1993)

    Article  ADS  Google Scholar 

  73. W. Kang, H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, K.W. West, How real are composite fermions? Phys. Rev. Lett. 71, 3850 (1993)

    Article  ADS  Google Scholar 

  74. V.J. Goldman, B. Su, J.K. Jain, Detection of composite fermions by magnetic focusing. Phys. Rev. Lett. 72, 2065 (1994)

    Article  ADS  Google Scholar 

  75. J.H. Smet, D. Weiss, R.H. Blick, G. Lütjering, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, G. Weimann, Magnetic focusing of composite fermions through arrays of cavities. Phys. Rev. Lett. 77, 2272 (1996)

    Article  ADS  Google Scholar 

  76. I.V. Kukushkin, J.H. Smet, K. von Klitzing, W. Wegscheider, Cyclotron resonance of composite fermions. Nature 415, 409 (2002)

    Article  ADS  Google Scholar 

  77. W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Fractional quantum Hall effect of composite fermions. Phys. Rev. Lett. 90, 016801 (2003)

    Google Scholar 

  78. J.K. Jain, The composite fermion: A quantum particle and its quantum fluids. Phys. Today 53, 39 (2000)

    Article  Google Scholar 

  79. M.M. Fogler, A.A. Koulakov, Laughlin liquid to charge-density-wave transition at high Landau levels. Phys. Rev. B 55, 9326 (1997)

    Article  ADS  Google Scholar 

  80. M.M. Fogler, Stripe and bubble phases in quantum Hall systems, in High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy (Springer, Berlin, 2002), pp. 98–138

    Google Scholar 

  81. M.O. Goerbig, P. Lederer, C. Morais Smith, Competition between quantum-liquid and electron-solid phases in intermediate Landau levels. Phys. Rev. B 69, 115327 (2004)

    Google Scholar 

  82. M.M. Fogler, A.A. Koulakov, B.I. Shklovskii, Ground state of a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 54, 1853 (1996)

    Article  ADS  Google Scholar 

  83. A.A. Koulakov, M.M. Fogler, B.I. Shklovskii, Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499 (1996)

    Google Scholar 

  84. R.R. Du, D.C. Tsui, H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 109, 389 (1999)

    Article  ADS  Google Scholar 

  85. M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394 (1999)

    Article  ADS  Google Scholar 

  86. K.B. Cooper, M.P. Lilly, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Insulating phases of two-dimensional electrons in high Landau levels: Observation of sharp thresholds to conduction. Phys. Rev. B 60, 285 (1999)

    Google Scholar 

  87. R. Côté, C.B. Doiron, J. Bourassa, H.A. Fertig, Dynamics of electrons in quantum Hall bubble phases. Phys. Rev. B 68, 155327 (2003)

    Article  ADS  Google Scholar 

  88. E. Wigner, On the interaction of electrons in metals. Phys. Rev. 46, 1002 (1934)

    Article  ADS  MATH  Google Scholar 

  89. R. Lewis, P.D. Ye, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, K.W. West, Microwave resonance of the bubble phases in 1/4 and 3/4 filled high Landau levels. Phys. Rev. Lett. 89, 136804 (2002)

    Article  ADS  Google Scholar 

  90. P.D. Ye, L.W. Engel, D.C. Tsui, R.M. Lewis, L.N. Pfeiffer, K.W. West, Correlation lengths of the Wigner-crystal order in a two-dimensional electron system at high magnetic fields. Phys. Rev. Lett. 89, 176802 (2002)

    Article  ADS  Google Scholar 

  91. R.M. Lewis, Y. Chen, L.W. Engel, D.C. Tsui, P.D. Ye, L.N. Pfeiffer, K.W. West, Evidence of a first-order phase transition between Wigner-crystal and bubble phases of 2D electrons in higher Landau levels. Phys. Rev. Lett. 93, 176808 (2004)

    Article  ADS  Google Scholar 

  92. S.H. Simon, Comment on “Evidence for an anisotropic state of two-dimensional electrons in high Landau levels”. Phys. Rev. Lett. 83, 4223 (1999)

    Google Scholar 

  93. R.L. Willett, K.W. West, L.N. Pfeiffer, Current-path properties of the transport anisotropy at filling factor 9/2. Phys. Rev. Lett. 87, 196805 (2001)

    Article  ADS  Google Scholar 

  94. K.B. Cooper, M.P. Lilly, J.P. Eisenstein, T. Jungwirth, L.N. Pfeiffer, K.W. West, An investigation of orientational symmetry-breaking mechanisms in high Landau levels. Solid State Commun. 119, 89 (2001)

    Article  ADS  Google Scholar 

  95. D.V. Fil, Piezoelectric mechanism for the orientation of stripe structures in two-dimensional electron systems. Low Temp. Phys. 55, 1 (2000)

    Google Scholar 

  96. I. Sodemann, A.H. Macdonald, Theory of orientational pinning in quantum Hall nematics. arXiv:1307.5489 (2013)

  97. J. Zhu, W. Pan, H.L. Stormer, L.N. Pfeiffer, K.W. West, Density-induced interchange of anisotropy axes at half-filled high Landau levels. Phys. Rev. Lett. 88, 116803 (2002)

    Article  ADS  Google Scholar 

  98. M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Anisotropic states of two-dimensional electron systems in high Landau levels: Effect of an in-plane magnetic field. Phys. Rev. Lett. 83, 824 (1999)

    Google Scholar 

  99. W. Pan, R.R. Du, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Strongly anisotropic electronic transport at Landau level filling factor \(\nu =9/2\) and \(\nu =5/2\) under a tilted magnetic field. Phys. Rev. Lett. 83, 820 (1999)

    Article  ADS  Google Scholar 

  100. E. Fradkin, S.A. Kivelson, Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065 (1999)

    Article  ADS  Google Scholar 

  101. E. Fradkin, S.A. Kivelson, E. Manousakis, K. Nho, Nematic phase of the two-dimensional electron gas in a magnetic field. Phys. Rev. Lett. 84, 1982 (2000)

    Article  ADS  Google Scholar 

  102. K.B. Cooper, M.P. Lilly, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Onset of anisotropic transport of two-dimensional electrons in high Landau levels: Possible isotropic-to-nematic liquid-crystal phase transition. Phys. Rev. B 65, 241313 (2002)

    Google Scholar 

  103. I.V. Kukushkin, V. Umansky, K. von Klitzing, J.H. Smet, Collective modes and the periodicity of quantum Hall stripes. Phys. Rev. Lett. 106, 206804 (2011)

    Article  ADS  Google Scholar 

  104. G. Sambandamurthy, R.M. Lewis, H. Zhu, Y.P. Chen, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, K.W. West, Observation of pinning mode of stripe phases of 2D systems in high Landau levels. Phys. Rev. Lett. 100, 256801 (2008)

    Article  ADS  Google Scholar 

  105. H. Zhu, G. Sambandamurthy, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, K.W. West, Pinning mode resonances of 2D electron stripe phases: Effect of an in-plane magnetic field. Phys. Rev. Lett. 102, 136804 (2009)

    Google Scholar 

  106. J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, K.W. West, Insulating and fractional quantum Hall states in the first excited Landau level. Phys. Rev. Lett. 88, 076801 (2002)

    Article  ADS  Google Scholar 

  107. J.S. Xia, W. Pan, C.L. Vicente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Electron correlation in the second Landau level: A competition between many nearly degenerate quantum phases. Phys. Rev. Lett. 93, 176809 (2004)

    Google Scholar 

  108. N. Deng, A. Kumar, M.J. Manfra, L.N. Pfeiffer, K.W. West, G.A. Csáthy, Collective nature of the reentrant integer quantum Hall states in the second Landau level. Phys. Rev. Lett. 108, 086803 (2012)

    Article  ADS  Google Scholar 

  109. M.O. Goerbig, P. Lederer, C. Morais Smith, Microscopic theory of the reentrant integer quantum Hall effect in the first and second excited Landau levels. Phys. Rev. B 68, 241302 (2003)

    Google Scholar 

  110. R.M. Lewis, Y.P. Chen, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, K.W. West, Microwave resonance of the reentrant insulating quantum Hall phases in the first excited Landau level. Phys. Rev. B 71, 081301 (2005)

    Article  ADS  Google Scholar 

  111. N. Deng, J.D. Watson, L.P. Rokhinson, M.J. Manfra, G.A. Csáthy, Contrasting energy scales of the reentrant integer quantum Hall states. Phys. Rev. B 86, 201301 (2012)

    Article  ADS  Google Scholar 

  112. J. Xia, V. Cvicek, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Tilt-induced anisotropic to isotropic phase transition at \(\nu = 5/2\). Phys. Rev. Lett. 105, 176807 (2010)

    Article  ADS  Google Scholar 

  113. R. Willett, J.P. Eisenstein, H.L. Störmer, D.C. Tsui, A.C. Gossard, J.H. English, Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987)

    Article  ADS  Google Scholar 

  114. M. Greiter, X.G. Wen, F. Wilczek, Paired Hall states. Nucl. Phys. B 374, 567 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. G. Moore, N. Read, Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  116. R.L. Willett, The quantum Hall effect at 5/2 filling factor. Rep. Prog. Phys. 76, 076501 (2013)

    Article  ADS  Google Scholar 

  117. F. Wilczek, Fractional Statistics and Anyon Superconductivity (World Scientific Publishing Co. Pte. Ltd., Singapore, 1990)

    Google Scholar 

  118. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Google Scholar 

  119. S. Das Sarma, M. Freedman, C. Nayak, Topological Quantum Computation. Phys. Today 59, 32 (2006)

    Google Scholar 

  120. A. Stern, Non-abelian states of matter. Nature 464, 187 (2010)

    Article  ADS  Google Scholar 

  121. A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. N.R. Cooper, N.K. Wilkin, J.M.F. Gunn, Quantum phases of vortices in rotating Bose-Einstein condensates. Phys. Rev. Lett. 87, 120405 (2001)

    Article  ADS  Google Scholar 

  123. L. Fu, C.L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  124. J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 40502 (2010)

    Google Scholar 

  125. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010)

    Google Scholar 

  126. S. Das Sarma, M. Freedman, C. Nayak, Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005)

    Google Scholar 

  127. D.E. Feldman, A. Kitaev, Detecting non-abelian statistics with an electronic Mach-Zehnder interferometer. Phys. Rev. Lett. 97, 186803 (2006)

    Article  ADS  Google Scholar 

  128. A. Stern, B.I. Halperin, Proposed experiments to probe the non-abelian \(\nu = 5/2\) quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006)

    Google Scholar 

  129. C.-Y. Hou, C. Chamon, Wormhole’ geometry for entrapping topologically protected qubits in non-abelian quantum Hall states and probing them with voltage and noise measurements. Phys. Rev. Lett. 97, 146802 (2006)

    Article  ADS  Google Scholar 

  130. P. Bonderson, A. Kitaev, K. Shtengel, Detecting non-abelian statistics in the \(\nu =5/2\) fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006)

    Article  ADS  Google Scholar 

  131. J.B. Miller, I.P. Radu, D.M. Zumbühl, E.M. Levenson-Falk, M.A. Kastner, C.M. Marcus, L.N. Pfeiffer, K.W. West, Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2. Nat. Phys. 3, 561 (2007)

    Article  Google Scholar 

  132. I.P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West, Quasi-particle properties from tunneling in the \(\nu = 5/2\) fractional quantum Hall state. Science 320, 899 (2008)

    Article  ADS  Google Scholar 

  133. R.L. Willett, L.N. Pfeiffer, K.W. West, Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-abelian quasiparticles. Phys. Rev. B 82, 205301 (2010)

    Article  ADS  Google Scholar 

  134. R.L. Willett, C. Nayak, K. Shtengel, L.N. Pfeiffer, K.W. West, Magnetic field-tuned Aharonov-Bohm oscillations and evidence for non-abelian anyons at \(\nu = 5/2\). Phys. Rev. Lett. 111, 186401 (2013)

    Article  ADS  Google Scholar 

  135. K. Yang, B.I. Halperin, Thermopower as a possible probe of non-abelian quasiparticle statistics in fractional quantum Hall liquids. Phys. Rev. B 79, 115317 (2009)

    Article  ADS  Google Scholar 

  136. N.R. Cooper, A. Stern, Observable bulk signatures of non-abelian quantum Hall states. Phys. Rev. Lett. 102, 176807 (2009)

    Article  ADS  Google Scholar 

  137. W.E. Chickering, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Thermoelectric response of fractional quantized Hall and reentrant insulating states in the N=1 Landau level. Phys. Rev. B 87, 075302 (2013)

    Article  ADS  Google Scholar 

  138. M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Observation of a quarter of an electron charge at the \(\nu =5/2\) quantum Hall state. Nature 452, 829 (2008)

    Article  ADS  Google Scholar 

  139. V. Venkatachalam, A. Yacoby, L. Pfeiffer, K. West, Local charge of the \(\nu = 5/2\) fractional quantum Hall state. Nature 469, 185 (2011)

    Article  ADS  Google Scholar 

  140. M. Levin, B.I. Halperin, B. Rosenow, Particle-hole symmetry and the Pfaffian state. Phys. Rev. Lett. 99, 236806 (2007)

    Article  ADS  Google Scholar 

  141. S.-S. Lee, S. Ryu, C. Nayak, M.P.A. Fisher, Particle-hole symmetry and the \(\nu =5/2\) quantum Hall state. Phys. Rev. Lett. 99, 236807 (2007)

    Article  ADS  Google Scholar 

  142. N. Read, E. Rezayi, Quasiholes and fermionic zero modes of paired fractional quantum Hall states: The mechanism for non-abelian statistics. Phys. Rev. B 54, 864 (1996)

    Google Scholar 

  143. J.P. Eisenstein, R. Willett, H.L. Stormer, D.C. Tsui, A.C. Gossard, J.H. English, Collapse of the even-denominator fractional quantum Hall effect in tilted fields. Phys. Rev. Lett. 61, 997 (1988)

    Article  ADS  Google Scholar 

  144. R.H. Morf, Transition from quantum Hall to compressible states in the second Landau level: New light on the \(\nu =5/2\) enigma. Phys. Rev. Lett. 80, 1505 (1998)

    Google Scholar 

  145. E.H. Rezayi, F.D.M. Haldane, Incompressible paired Hall state, stripe order, and the composite fermion liquid phase in half-filled Landau levels. Phys. Rev. Lett. 84, 4685 (2000)

    Article  ADS  Google Scholar 

  146. W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Experimental evidence for a spin-polarized ground state in the \(\nu = 5/2\) fractional quantum Hall effect. Solid State Commun. 119, 641 (2001)

    Article  ADS  Google Scholar 

  147. S. Das Sarma, G. Gervais, X. Zhou, Energy gap and spin polarization in the 5/2 fractional quantum Hall effect. Phys. Rev. B 82, 115330 (2010)

    Google Scholar 

  148. T.D. Rhone, J. Yan, Y. Gallais, A. Pinczuk, L. Pfeiffer, K. West, Rapid collapse of spin waves in nonuniform phases of the second Landau level. Phys. Rev. Lett. 106, 196805 (2011)

    Article  ADS  Google Scholar 

  149. U. Wurstbauer, K.W. West, L.N. Pfeiffer, A. Pinczuk, Resonant inelastic light scattering investigation of low-lying gapped excitations in the quantum fluid at \(\nu = 5/2\). Phys. Rev. Lett. 110, 026801 (2013)

    Article  ADS  Google Scholar 

  150. M. Stern, P. Plochocka, V. Umansky, D.K. Maude, M. Potemski, I. Bar-Joseph, Optical probing of the spin polarization of the \(\nu = 5/2\) quantum Hall state. Phys. Rev. Lett. 105, 096801 (2010)

    Article  ADS  Google Scholar 

  151. M. Stern, B.A. Piot, Y. Vardi, V. Umansky, P. Plochocka, D.K. Maude, I. Bar-Joseph, NMR probing of the spin polarization of the \(\nu = 5/2\) quantum Hall state. Phys. Rev. Lett. 108, 066810 (2012)

    Article  ADS  Google Scholar 

  152. L. Tiemann, G. Gamez, N. Kumada, K. Muraki, Unraveling the spin polarization of the \(\nu =5/2\) fractional quantum Hall state. Science 335, 828 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Frieß .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frieß, B. (2016). The Two-Dimensional Electron System. In: Spin and Charge Ordering in the Quantum Hall Regime. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-33536-0_2

Download citation

Publish with us

Policies and ethics