Skip to main content

Preclinical Testing of Novel Radiotracers for Positron Emission Tomography (PET)

  • Chapter
  • First Online:
Quality in Nuclear Medicine

Abstract

Preclinical tests of novel radiotracers in experimental animals are required to move tracer candidates from the stage of in vitro testing to the stage of toxicity testing and finally studies in human volunteers. Such preclinical tests are aimed at demonstrating: (1) specific in vivo interaction of the tracer with its target, (2) adequate kinetics and metabolic stability of the tracer after it has been injected into living mammals, and (3) sensitivity of tracer uptake to changes of target expression. Possible strategies to reach these aims are discussed, including specific animal models which are used in our institution. These include pharmacological treatment of healthy animals, target gene knockout, tumor growth, brain lesions resulting in loss of myelin, viral infection, sterile inflammation, and xenografting of inflammatory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboagye EO, Luthra SK, Brady F, Poole K, Anderson H, Jones T, Boobis A, Burtles SS, Price P. Cancer Research UK procedures in manufacture and toxicology of radiotracers intended for pre-phase I positron emission tomography studies in cancer patients. Br J Cancer. 2002;86:1052–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexoff DL, Vaska P, Marsteller D, Gerasimov T, Li J, Logan J, Fowler JS, Taintor NB, Thanos PK, Volkow ND. Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med. 2003;44:815–22.

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108:1501–16.

    Article  CAS  PubMed  Google Scholar 

  • Ananias HJ, Yu Z, Dierckx RA, van der Wiele C, Helfrich W, Wang F, Yan Y, Chen X, de Jong I, Elsinga PH. (99m)technetium-HYNIC(tricine/TPPTS)-Aca-bombesin(7-14) as a targeted imaging agent with microSPECT in a PC-3 prostate cancer xenograft model. Mol Pharm. 2011;8:1165–73.

    Article  CAS  PubMed  Google Scholar 

  • Andersen VL, Hansen HD, Herth MM, Dyssegaard A, Knudsen GM, Kristensen JL. (11)C-labeling and preliminary evaluation of pimavanserin as a 5-HT2A receptor PET-radioligand. Bioorg Med Chem Lett. 2015;25:1053–6.

    Article  CAS  PubMed  Google Scholar 

  • Antunes IF, Haisma HJ, Elsinga PH, Dierckx RA, de Vries EF. Synthesis and evaluation of [(18)F]-FEAnGA as a PET tracer for beta-glucuronidase activity. Chem: Bioconjug; 2010.

    Google Scholar 

  • Antunes IF, Doorduin J, Haisma HJ, Elsinga PH, van Waarde A, Willemsen AT, Dierckx RA, de Vries EF. 18F-FEAnGA for PET of beta-glucuronidase activity in neuroinflammation. J Nucl Med. 2012a;53:451–8.

    Article  CAS  PubMed  Google Scholar 

  • Antunes IF, Haisma HJ, Elsinga PH, Di Gialleonardo V, van Waarde A, Willemsen AT, Dierckx RA, de Vries EF. Induction of beta-glucuronidase release by cytostatic agents in small tumors. Mol Pharm. 2012b;9:3277–85.

    Article  CAS  PubMed  Google Scholar 

  • Antunes IF, Haisma HJ, Elsinga PH, Sijbesma JW, van Waarde A, Willemsen AT, Dierckx RA, de Vries EF. In vivo evaluation of [18F]FEAnGA-Me: a PET tracer for imaging beta-glucuronidase (beta-GUS) activity in a tumor/inflammation rodent model. Nucl Med Biol. 2012c;39:854–63.

    Article  CAS  PubMed  Google Scholar 

  • Antunes IF, Haisma HJ, Elsinga PH, van Waarde A, Willemsen AT, Dierckx RA, de Vries EF. In vivo evaluation of 1-O-(4-(2-fluoroethyl-carbamoyloxymethyl)-2-nitrophenyl)-O-beta-D-glucopyronurona te: a positron emission tomographic tracer for imaging beta-glucuronidase activity in a tumor/inflammation rodent model. Mol Imaging. 2012d;11:77–87.

    CAS  PubMed  Google Scholar 

  • Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol. 2005;59:491–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backer MV, Backer JM. Imaging key biomarkers of tumor angiogenesis. Theranostics. 2012;2:502–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer. 2004;40:852–7.

    Article  CAS  PubMed  Google Scholar 

  • Biomarker Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  • Brooks DJ, Pavese N. Imaging biomarkers in Parkinson’s disease. Prog Neurobiol. 2011;95:614–28.

    Article  CAS  PubMed  Google Scholar 

  • Buursma AR, Beerens AM, de Vries EF, van Waarde A, Rots MG, Hospers GA, Vaalburg W, Haisma HJ. The human norepinephrine transporter in combination with 11C-m-hydroxyephedrine as a reporter gene/reporter probe for PET of gene therapy. J Nucl Med. 2005a;46:2068–75.

    CAS  PubMed  Google Scholar 

  • Buursma AR, de Vries EF, Garssen J, Kegler D, van Waarde A, Schirm J, Hospers GA, Mulder NH, Vaalburg W, Klein HC. [18F]FHPG positron emission tomography for detection of herpes simplex virus (HSV) in experimental HSV encephalitis. J Virol. 2005b;79:7721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlucci G, Ananias HJ, Yu Z, Hoving HD, Helfrich W, Dierckx RA, Liu S, de Jong I, Elsinga PH. Preclinical evaluation of a novel (1)(1)(1)In-labeled bombesin homodimer for improved imaging of GRPR-positive prostate cancer. Mol Pharm. 2013;10:1716–24.

    Article  CAS  PubMed  Google Scholar 

  • Carlucci G, Kuipers A, Ananias HJ, de Paula Faria D, Dierckx RA, Helfrich W, Rink R, Moll GN, de Jong I, Elsinga PH. GRPR-selective PET imaging of prostate cancer using [(18)F]-lanthionine-bombesin analogs. Peptides. 2015;67:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Chopra A, Shan L, Eckelman WC, Leung K, Menkens AE. Important parameters to consider for the characterization of PET and SPECT imaging probes. Nucl Med Biol. 2011;38:1079–84.

    Article  CAS  PubMed  Google Scholar 

  • Dandekar M, Tseng JR, Gambhir SS. Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med. 2007;48:602–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong M, Maina T. Of mice and humans: are they the same? – Implications in cancer translational research. J Nucl Med. 2010;51:501–4.

    Article  PubMed  Google Scholar 

  • de Paula Faria D, de Vries EF, Sijbesma JW, Buchpiguel CA, Dierckx RA, Copray SC. PET imaging of glucose metabolism, neuroinflammation and demyelination in the lysolecithin rat model for multiple sclerosis. Mult Scler. 2014;20:1443–52.

    Article  CAS  Google Scholar 

  • Di Gialleonardo V, Signore A, Willemsen AT, Sijbesma JW, Dierckx RA, de Vries EF. Pharmacokinetic modelling of N-(4-[(18)F]fluorobenzoyl)interleukin-2 binding to activated lymphocytes in an xenograft model of inflammation. Eur J Nucl Med Mol Imaging. 2012;39:1551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dishino DD, Welch MJ, Kilbourn MR, Raichle ME. Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J Nucl Med. 1983;24:1030–8.

    CAS  PubMed  Google Scholar 

  • Dobos N, de Vries EF, Kema IP, Patas K, Prins M, Nijholt IM, Dierckx RA, Korf J, den Boer JA, Luiten PG, Eisel UL. The role of indoleamine 2,3-dioxygenase in a mouse model of neuroinflammation-induced depression. J Alzheimers Dis. 2012;28:905–15.

    CAS  PubMed  Google Scholar 

  • Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol. 2009;11:386–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doorduin J, Klein HC, de Jong JR, Dierckx RA, de Vries EF. Evaluation of [11C]-DAA1106 for imaging and quantification of neuroinflammation in a rat model of herpes encephalitis. Nucl Med Biol. 2010;37:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Doorduin J, de Vries EF, Dierckx RA, Klein HC. P-glycoprotein activity in the blood-brain barrier is affected by virus-induced neuroinflammation and antipsychotic treatment. Neuropharmacology. 2014;85:548–53.

    Article  CAS  PubMed  Google Scholar 

  • Doze P, Elsinga PH, de Vries EF, van Waarde A, Vaalburg W. Mutagenic activity of a fluorinated analog of the beta-adrenoceptor ligand carazolol in the Ames test. Nucl Med Biol. 2000a;27:315–9.

    Article  CAS  PubMed  Google Scholar 

  • Doze P, van Waarde A, Elsinga PH, Hendrikse NH, Vaalburg W. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier. Synapse. 2000b;36:66–74.

    Article  CAS  PubMed  Google Scholar 

  • Duffy SW, Treasure FP. Potential surrogate endpoints in cancer research – some considerations and examples. Pharm Stat. 2011;10:34–9.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC. The testing of putative receptor binding radiotracers in vivo. In: Diksic M, Reba RC, editors. Radiopharmaceuticals and brain pathology studied with PET and SPECT. Boca Raton: CRC Press; 1991. p. 41–68.

    Google Scholar 

  • Eckelman WC. The application of receptor theory to receptor-binding and enzyme-binding oncologic radiopharmaceuticals. Nucl Med Biol. 1994;21:759–69.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC. Sensitivity of new radiopharmaceuticals. Nucl Med Biol. 1998;25:169–73.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC. The use of gene-manipulated mice in the validation of receptor binding radiotracer. Nucl Med Biol. 2003a;30:851–60.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC. The use of PET and knockout mice in the drug discovery process. Drug Discov Today. 2003b;8:404–10.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC. Targeted molecular imaging: target significance and probe validation. JACC Cardiovasc Imaging. 2012;5:616–8.

    Article  PubMed  Google Scholar 

  • Eckelman WC, Mathis CA. Targeting proteins in vivo: in vitro guidelines. Nucl Med Biol. 2006;33:161–4.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC, Reba RC, Kelloff GJ. Targeted imaging: an important biomarker for understanding disease progression in the era of personalized medicine. Drug Discov Today. 2008;13:748–59.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC, Kilbourn MR, Mathis CA. Specific to nonspecific binding in radiopharmaceutical studies: it’s not so simple as it seems! Nucl Med Biol. 2009;36:235–7.

    Article  CAS  PubMed  Google Scholar 

  • Fischman AJ, Alpert NM, Rubin RH. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet. 2002;41:581–602.

    Article  CAS  PubMed  Google Scholar 

  • Gibson RE, Eckelman WC, Rzeszotarski WJ, Jiang VW, Mazaitis A, Paik C, Komai T, Reba RC. Radiotracer localization by ligand-receptor interactions. In: Colombetti LG, editor. Principles of radiopharmacology, vol. 2. West Palm Beach: CRC Press; 1979. p. 17–40.

    Google Scholar 

  • Giron MC. Radiopharmaceutical pharmacokinetics in animals: critical considerations. Q J Nucl Med Mol Imaging. 2009;53:359–64.

    CAS  PubMed  Google Scholar 

  • Giron MC, Portolan S, Bin A, Mazzi U, Cutler CS. Cytochrome P450 and radiopharmaceutical metabolism. Q J Nucl Med Mol Imaging. 2008;52:254–66.

    CAS  PubMed  Google Scholar 

  • Hendrikse NH, de Vries EG, Eriks-Fluks L, van der Graaf WT, Hospers GA, Willemsen AT, Vaalburg W, Franssen EJ. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier. Cancer Res. 1999;59:2411–6.

    CAS  PubMed  Google Scholar 

  • Hicks RJ, Dorow D, Roselt P. PET tracer development – a tale of mice and men. Cancer Imaging. 2006;6:S102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman RM. Orthotopic is orthodox: why are orthotopic-transplant metastatic models different from all other models? J Cell Biochem. 1994;56:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999;17:343–59.

    Article  CAS  PubMed  Google Scholar 

  • Honer M, Gobbi L, Martarello L, Comley RA. Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov Today. 2014;19:1936–44.

    Article  CAS  PubMed  Google Scholar 

  • Hume SP, Myers R. Dedicated small animal scanners: a new tool for drug development? Curr Pharm Des. 2002;8:1497–511.

    Article  CAS  PubMed  Google Scholar 

  • Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med. 1998;25:173–6.

    Article  CAS  PubMed  Google Scholar 

  • Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widen L. Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab. 1991;11:926–31.

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Kawamura K, Yanai K, Hendrikse NH. In vivo evaluation of P-glycoprotein modulation of 8 PET radioligands used clinically. J Nucl Med. 2007;48:81–7.

    CAS  PubMed  Google Scholar 

  • Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev. 2013;65:1214–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagoda EM, Vaquero JJ, Seidel J, Green MV, Eckelman WC. Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol. 2004;31:771–9.

    Article  CAS  PubMed  Google Scholar 

  • Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 1998;17:279–84.

    Article  PubMed  Google Scholar 

  • Kramer-Marek G, Capala J. Can PET imaging facilitate optimization of cancer therapies? Curr Pharm Des. 2012;18:2657–69.

    Article  CAS  PubMed  Google Scholar 

  • Kroll T, Elmenhorst D, Weisshaupt A, Beer S, Bauer A. Reproducibility of non-invasive A1 adenosine receptor quantification in the rat brain using [(18)F]CPFPX and positron emission tomography. Mol Imaging Biol. 2014;16:699–709.

    Article  PubMed  Google Scholar 

  • Kuik WJ, Kema IP, Brouwers AH, Zijlma R, Neumann KD, Dierckx RA, DiMagno SG, Elsinga PH. In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional electrophilic substitution. J Nucl Med. 2015;56:106–12.

    Article  CAS  PubMed  Google Scholar 

  • Kung MP, Kung HF. Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol. 2005;32:673–8.

    Article  CAS  PubMed  Google Scholar 

  • Lamoureux M, Thorn S, Dumouchel T, Renaud JM, Klein R, Mason S, Lortie M, DaSilva JN, Beanlands RS, De Kemp RA. Uniformity and repeatability of normal resting myocardial blood flow in rats using [13N]-ammonia and small animal PET. Nucl Med Commun. 2012;33:917–25.

    Article  PubMed  Google Scholar 

  • Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci. 2010;31:411–7.

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003;5:363–75.

    Article  PubMed  Google Scholar 

  • Laven M, Markides K, Langstrom B. Analysis of microsomal metabolic stability using high-flow-rate extraction coupled to capillary liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;806:119–26.

    Article  CAS  PubMed  Google Scholar 

  • Law MP. Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol. 1993;109:1101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23:682–4.

    Article  CAS  PubMed  Google Scholar 

  • Loi M, Di PD, Becherini P, Zorzoli A, Perri P, Carosio R, Cilli M, Ribatti D, Brignole C, Pagnan G, Ponzoni M, Pastorino F. The use of the orthotopic model to validate antivascular therapies for cancer. Int J Dev Biol. 2011;55:547–55.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Lang L, Kiesewetter DO, Jagoda E, Sassaman MB, Der M, Eckelman WC. Liquid chromatography-tandem mass spectrometry identification of metabolites of two 5-HT1A antagonists, N-[2-[4-(2-methoxylphenyl)piperazino]ethyl]-N-(2-pyridyl) trans- and cis-4-fluorocyclohexanecarboxamide, produced by human and rat hepatocytes. J Chromatogr B Biomed Sci Appl. 2001;755:47–56.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kiesewetter DO, Jagoda EM, Huang BX, Eckelman WC. Identification of metabolites of fluorine-18-labeled M2 muscarinic receptor agonist, 3-(3-[(3-fluoropropyl)thio]-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyr idine, produced by human and rat hepatocytes. J Chromatogr B Analyt Technol Biomed Life Sci. 2002a;766:319–29.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Lang L, Kiesewetter DO, Eckelman WC. Liquid chromatography-tandem mass spectrometry identification of metabolites of three phenylcarboxyl derivatives of the 5-HT(1A) antagonist, N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) trans-4-fluorocyclohexanecarboxamide (FCWAY), produced by human and rat hepatocytes. J Chromatogr B Analyt Technol Biomed Life Sci. 2002b;780:99–110.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kiesewetter D, Lang L, Eckelman WC. Application of LC-MS to the analysis of new radiopharmaceuticals. Mol Imaging Biol. 2003;5:397–403.

    Article  PubMed  Google Scholar 

  • Marzin D. Preclinical evaluation of radiopharmaceutical: toxicological prerequisites. Nucl Med Biol. 1998;25:733–6.

    Article  CAS  PubMed  Google Scholar 

  • Matusiak N, Castelli R, Tuin AW, Overkleeft HS, Wisastra R, Dekker FJ, Prely LM, Bischoff RP, van Waarde A, Dierckx RA, Elsinga PH. A dual inhibitor of matrix metalloproteinases and a disintegrin and metalloproteinases, [(1)(8)F]FB-ML5, as a molecular probe for non-invasive MMP/ADAM-targeted imaging. Bioorg Med Chem. 2015;23:192–202.

    Article  CAS  PubMed  Google Scholar 

  • Maziere B, Cantineau R, Coenen HH. PET radiopharmaceutical metabolism – plasma metabolite analysis. In: Stöcklin G, Pike VW, editors. Radiopharmaceuticals for positron emission tomography: methodological aspects. Dordrecht: Kluwer Academic Publishers; 1992. p. 151–78.

    Google Scholar 

  • McCarthy DJ, Halldin C, Andersson JD, Pierson ME. Discovery of novel positron emission tomography tracers. Annu Rep Med Chem. 2009;44:501–13.

    Article  CAS  Google Scholar 

  • Moerlein SM, Laufer P, Stocklin G. Effect of lipophilicity on the in vivo localization of radiolabelled spiperone analogues. Int J Nucl Med Biol. 1985;12:353–6.

    Article  CAS  PubMed  Google Scholar 

  • Moerlein SM, Weisman RA, Beck D, Li AP, Welch MJ. Metabolism in vitro of radioiodinated N-isopropyl-p-iodoamphetamine by isolated hepatocytes. Nucl Med Biol. 1993;20:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Neels OC, Koopmans KP, Jager PL, Vercauteren L, van Waarde A, Doorduin J, Timmer-Bosscha H, Brouwers AH, de Vries EG, Dierckx RA, Kema IP, Elsinga PH. Manipulation of [11C]-5-hydroxytryptophan and 6-[18F]fluoro-3,4-dihydroxy-L-phenylalanine accumulation in neuroendocrine tumor cells. Cancer Res. 2008;68:7183–90.

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A. Molecular imaging in Alzheimer’s disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther. 2011;3:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakzad F, Ell PJ, Carrio I. Molecular imaging in animal models of disease – every little detail counts! Eur J Nucl Med Mol Imaging. 2005;32:899–900.

    Article  PubMed  Google Scholar 

  • Palumbo B, Buresta T, Nuvoli S, Spanu A, Schillaci O, Fravolini ML, Palumbo I. SPECT and PET serve as molecular imaging techniques and in vivo biomarkers for brain metastases. Int J Mol Sci. 2014;15:9878–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passchier J, van Waarde A, Doze P, Elsinga PH, Vaalburg W. Influence of P-glycoprotein on brain uptake of [18F]MPPF in rats. Eur J Pharmacol. 2000;407:273–80.

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Gibson R. In vivo site-directed radiotracers: a mini-review. Nucl Med Biol. 2008;35:805–15.

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Khanapur S, Rybczynska AA, Kwizera C, Sijbesma JW, Ishiwata K, Willemsen AT, Elsinga PH, Dierckx RA, van Waarde A. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine. J Nucl Med. 2011;52:1293–300.

    Article  PubMed  Google Scholar 

  • Paul S, Khanapur S, Boersma W, Sijbesma JW, Ishiwata K, Elsinga PH, Meerlo P, Doorduin J, Dierckx RA, van Waarde A. Cerebral adenosine A(1) receptors are upregulated in rodent encephalitis. Neuroimage. 2014;92:83–9.

    Article  CAS  PubMed  Google Scholar 

  • Pike VW. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30:431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimlott SL. Radiotracer development in psychiatry. Nucl Med Commun. 2005;26:183–8.

    Article  PubMed  Google Scholar 

  • Pomper MG, Lee JS. Small animal imaging in drug development. Curr Pharm Des. 2005;11:3247–72.

    Article  CAS  PubMed  Google Scholar 

  • Puntmann VO. How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease. Postgrad Med J. 2009;85:538–45.

    Article  CAS  PubMed  Google Scholar 

  • Richter WS. Imaging biomarkers as surrogate endpoints for drug development. Eur J Nucl Med Mol Imaging. 2006;33 Suppl 1:6–10.

    Article  PubMed  Google Scholar 

  • Rybczynska AA, Elsinga PH, Sijbesma JW, Ishiwata K, de Jong JR, de Vries EF, Dierckx RA, van Waarde A. Steroid hormones affect binding of the sigma ligand 11C-SA4503 in tumour cells and tumour-bearing rats. Eur J Nucl Med Mol Imaging. 2009;36:1167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybczynska AA, de Bruyn M, Ramakrishnan NK, de Jong JR, Elsinga PH, Helfrich W, Dierckx RA, van Waarde A. In vivo responses of human A375M melanoma to a sigma ligand: 18F-FDG PET imaging. J Nucl Med. 2013;54:1613–20.

    Article  CAS  PubMed  Google Scholar 

  • Silberstein EB. Preclinical evaluation of radiopharmaceutical toxicology: prerequisites. Nucl Med Biol. 2000;27:101.

    Article  CAS  PubMed  Google Scholar 

  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Syrota A. Investigation of myocardial receptors by PET in heart diseases. In: Heiss WD, editor. Clinical efficacy of positron emission tomography. Dordrecht: Martinus Nijhoff; 1987. p. 253–63.

    Chapter  Google Scholar 

  • Thackeray JT, Renaud JM, Kordos M, Klein R, dekemp RA, Beanlands RS, DaSilva JN. Test-retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol. 2013;40:676–81.

    Article  CAS  PubMed  Google Scholar 

  • Toyohara J, Elsinga PH, Ishiwata K, Sijbesma JW, Dierckx RA, van Waarde A. Evaluation of 4’-[methyl-11C]thiothymidine in a rodent tumor and inflammation model. J Nucl Med. 2012;53:488–94.

    Article  CAS  PubMed  Google Scholar 

  • Tseng JR, Dandekar M, Subbarayan M, Cheng Z, Park JM, Louie S, Gambhir SS. Reproducibility of 3'-deoxy-3'-18F-fluorothymidine MicroPET studies in tumor xenografts in mice. J Nucl Med. 2005;46:1851–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallez Garcia D, de Vries EF, Toyohara J, Ishiwata K, Hatano K, Dierckx RA, Doorduin J. Evaluation of [C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis. Eur J Nucl Med Mol Imaging. 2015;42(7):1106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Waarde A, Elsinga PH. Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des. 2008;14:3326–39.

    Article  PubMed  Google Scholar 

  • van Waarde A, Meeder JG, Blanksma PK, Bouwer J, Visser GM, Elsinga PH, Paans AMJ, Vaalburg W, Lie KI. Suitability of CGP12177 and CGP26505 for quantitative imaging of β adrenoceptors. Nucl Med Biol. 1992a;19:711–8.

    Google Scholar 

  • van Waarde A, Meeder JG, Blanksma PK, Brodde OE, Visser GM, Elsinga PH, Paans AM, Vaalburg W, Lie KI. Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to beta-adrenoceptors. Eur J Pharmacol. 1992b;222:107–12.

    Article  PubMed  Google Scholar 

  • van Waarde A, Elsinga PH, Brodde OE, Visser GM, Vaalburg W. Myocardial and pulmonary uptake of S-1'-[18F]fluorocarazolol in intact rats reflects radioligand binding to beta-adrenoceptors. Eur J Pharmacol. 1995;272:159–68.

    Article  PubMed  Google Scholar 

  • van Waarde A, Elsinga PH, Doze P, Heldoorn M, Jaeggi KA, Vaalburg W. A novel beta-adrenoceptor ligand for positron emission tomography: evaluation in experimental animals. Eur J Pharmacol. 1998;343:289–96.

    Article  PubMed  Google Scholar 

  • van Waarde A, Buursma AR, Hospers GA, Kawamura K, Kobayashi T, Ishii K, Oda K, Ishiwata K, Vaalburg W, Elsinga PH. Tumor imaging with 2 sigma-receptor ligands, 18F-FE-SA5845 and 11C-SA4503: a feasibility study. J Nucl Med. 2004a;45:1939–45.

    PubMed  Google Scholar 

  • van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, Jager PL, Hoekstra HJ, Elsinga PH. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004b;45:695–700.

    PubMed  Google Scholar 

  • van Waarde A, Vaalburg W, Doze P, Bosker FJ, Elsinga PH. PET imaging of beta-adrenoceptors in human brain: a realistic goal or a mirage? Curr Pharm Des. 2004c;10:1519–36.

    Article  PubMed  Google Scholar 

  • van Waarde A, Jager PL, Ishiwata K, Dierckx RA, Elsinga PH. Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. J Nucl Med. 2006;47:150–4.

    PubMed  Google Scholar 

  • van Waarde A, Shiba K, de Jong JR, Ishiwata K, Dierckx RA, Elsinga PH. Rapid reduction of sigma1-receptor binding and 18F-FDG uptake in rat gliomas after in vivo treatment with doxorubicin. J Nucl Med. 2007;48:1320–6.

    Article  CAS  PubMed  Google Scholar 

  • van Waarde A, Doorduin J, de Jong JR, Dierckx RA, Elsinga PH. Synthesis and preliminary evaluation of (S)-[11C]-exaprolol, a novel beta-adrenoceptor ligand for PET. Neurochem Int. 2008;52:729–33.

    Article  CAS  PubMed  Google Scholar 

  • van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Berardi F, de Jong JR, Kwizera C, Perrone R, Cantore M, Sijbesma JW, Dierckx RA, Colabufo NA. Synthesis and preclinical evaluation of novel PET probes for P-glycoprotein function and expression. J Med Chem. 2009;52:4524–32.

    Article  CAS  PubMed  Google Scholar 

  • Vanderheyden JL. The use of imaging in preclinical drug development. Q J Nucl Med Mol Imaging. 2009;53:374–81.

    CAS  PubMed  Google Scholar 

  • Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol. 2003;5:376–89.

    Article  PubMed  Google Scholar 

  • Wong DF, Pomper MG. Predicting the success of a radiopharmaceutical for in vivo imaging of central nervous system neuroreceptor systems. Mol Imaging Biol. 2003;5:350–62.

    Article  PubMed  Google Scholar 

  • Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics. 2013;3:448–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Carlucci G, Ananias HJ, Dierckx RA, Liu S, Helfrich W, Wang F, de Jong I, Elsinga PH. Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids. 2013;44:543–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The procedures described above constitute the general approach for validation of a novel radiotracer. However, the milestones on the way should not be interpreted as absolute go/no-go moments. If a tracer fails in one test but passes all others, and if the point of failure concerns an issue which could be present in rodents but be absent in humans (e.g., rapid metabolism), a limited pilot study in primates can still be carried out in order to avoid the premature discarding of a valuable radiopharmaceutical. Such a decision may particularly be made if no other tracers for the target are available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aren van Waarde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Waarde, A., Sijbesma, J.W.A., Doorduin, J., Elsinga, P.H., de Vries, E.F.J. (2017). Preclinical Testing of Novel Radiotracers for Positron Emission Tomography (PET). In: Glaudemans, A., Medema, J., van Zanten, A., Dierckx, R., Ahaus, C. (eds) Quality in Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-33531-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33531-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33529-2

  • Online ISBN: 978-3-319-33531-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics