How to Share Knowledge by Gossiping

  • Andreas Herzig
  • Faustine Maffre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9571)


Given n agents each of which has a secret (a fact not known to anybody else), the classical version of the gossip problem is to achieve shared knowledge of all secrets in a minimal number of phone calls. There exist protocols achieving shared knowledge in \(2(n{-}2)\) calls: when the protocol terminates everybody knows all the secrets. We generalize that problem and focus on higher-order shared knowledge: how many calls does it take to obtain that everybody knows that everybody knows all secrets? More generally, how many calls does it take to obtain shared knowledge of order k? This requires not only the communication of secrets, but also the communication of knowledge about secrets. We give a protocol that works in \((k{+}1)(n{-}2)\) steps and prove that it is correct: it achieves shared knowledge of level k. The proof is presented in a dynamic epistemic logic that is based on the observability of propositional variables by agents.


Gossip Epistemic logic Shared knowledge Common knowledge 



We would like to acknowledge several discussions about the gossip problem at the inspiring August 2015 workshop “To be announced” in Leiden, in particular with Hans van Ditmarsch, Jan van Eijck, Malvin Gattinger, Louwe Kuijer, Christian Muise, Pere Pardo, Rahim Ramezanian and Francois Schwarzentruber. We are also grateful to Davide Grossi, Emiliano Lorini and Martin Cooper.


  1. 1.
    Akkoyunlu, E.A., Ekanadham, K., Hubert, R.V.: Some constraints and tradeoffs in the design of network communications. In: Proceedings of the 5th ACM Symposium on Operating Systems Principles, pp. 67–74. ACM Press (1975)Google Scholar
  2. 2.
    Attamah, M., van Ditmarsch, H., Grossi, D., van der Hoek, W.: A framework for epistemic gossip protocols. In: Bulling, N. (ed.) EUMAS 2014. LNCS, vol. 8953, pp. 193–209. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-17130-2_13 Google Scholar
  3. 3.
    Attamah, M., van Ditmarsch, H., Grossi, D., van der Hoek, W.: Knowledge and gossip. In: Proceedings of 21st ECAI pp. 21–26 (2014)Google Scholar
  4. 4.
    Baker, B., Shostak, R.: Gossips and telephones. Discrete Math. 2(3), 191–193 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Charrier, T., Herzig, A., Lorini, E., Schwarzentruber, F.: Building epistemic logic from observations and public announcements. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), CapeTown. AAAI Press (2016).,
  6. 6.
    Cooper, M., Herzig, A., Maffre, F., Maris, F., Régnier, P.: A simple account of multiagent epistemic planning. In: Maris, F. (ed.) Journées Francophones sur la Planification, la Décision et l’Apprentissage (JFPDA), Rennes, 1 May 2015–3 July 2015, p. (online). AFIA (Juillet 2015).,
  7. 7.
    van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.: Dynamic gossip. CoRR abs/1511.00867 (2015).
  8. 8.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  9. 9.
    Hajnal, A., Milner, E.C.B., Szemerédi, E.: A cure for the telephone disease. Can. Math. Bull. 15(3), 447–450 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on propositional assignment and higher-order observation. In: van der Hoek, W., Holliday, W.H., Wang, W.-F. (eds.) LORI 2015. LNCS, vol. 9394, pp. 156–168. Springer, Heidelberg (2015). CrossRefGoogle Scholar
  11. 11.
    van der Hoek, W., Iliev, P., Wooldridge, M.: A logic of revelation and concealment. In: van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.) Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, IFAAMAS, pp. 1115–1122 (2012)Google Scholar
  12. 12.
    van der Hoek, W., Troquard, N., Wooldridge, M.: Knowledge and control. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, IFAAMAS, pp. 719–726 (2011)Google Scholar
  13. 13.
    Hurkens, C.A.J.: Spreading gossip efficiently. Nieuw Archief voor Wiskunde 5/1(2), 208–210 (2000)MathSciNetGoogle Scholar
  14. 14.
    Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 19(3), 188–192 (1971)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Herzig
    • 1
  • Faustine Maffre
    • 1
  1. 1.IRIT, Université de ToulouseToulouse Cedex 9France

Personalised recommendations