Skip to main content

Neighbour Recognition Through Volatile-Mediated Interactions

  • Chapter
  • First Online:
  • 1616 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plants constitutively emit a wide array of volatile organic compounds (VOCs) and, upon biotic and abiotic stress, release a more complex and more diverse VOC blend. These VOCs mediate multiple ecological interactions between plants and their associated community members, including plant–plant communication or neighbour recognition. Albeit initially discredited, the concept of VOCs mediating plant–plant communication is now well accepted. In general, plants perceive and respond to VOCs emanating from their neighbours with physiological, biochemical or phenotypic changes that may convey resistance to abiotic and biotic stress. However, the mechanisms underpinning this process, the ecological and evolutionary relevance as well as the circumstances under which this process occurs remain largely obscure. In particular, there is very scarce information on whether and how global change, which has increasingly been shown to change VOC emission patterns and alter VOC atmospheric lifetimes, can disrupt VOC-mediated plant–plant communication. This chapter updates our current knowledge about these aspects and, through synthesising them, intends to point out gaps in existing research, in particular the need for further studies in a changing environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali M, Sugimoto K, Ramadan A, Arimura G (2013) Memory of plant communications for priming anti-herbivore responses. Sci Rep 3:1872

    PubMed  PubMed Central  Google Scholar 

  • Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, De Vleesschauwer D, Haesaert G, Smagghe G (2015) Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol 167:1671–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000a) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000b) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Muroi A, Nishihara M (2012) Plant–plant–plant communications, mediated by (E)-β-ocimene emitted from transgenic tobacco plants, prime indirect defense responses of lima beans. J Plant Interact 7:193–196

    Article  CAS  Google Scholar 

  • Asai N, Nishioka T, Takabayashi J, Furuichi T (2009) Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells. Plant Signal Behav 4:294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  CAS  PubMed  Google Scholar 

  • Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B (2015) The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci 20:443–452

    Article  CAS  PubMed  Google Scholar 

  • Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493

    Article  PubMed  Google Scholar 

  • Blande JD, Holopainen JK, Li T (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13:1172–1181

    Article  PubMed  Google Scholar 

  • Blande JD, Holopainen JK, Niinemets Ü (2014) Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ 37:1892–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) cis-jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascone P, Iodice L, Maffei ME, Bossi S, Arimura G, Guerrieri E (2015) Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J Plant Physiol 173:28–32

    Article  CAS  PubMed  Google Scholar 

  • Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B (2015) Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathol 44:245–254

    Article  CAS  Google Scholar 

  • Dahlin I, Vucetic A, Ninkovic V (2015) Changed host plant volatile emissions induced by chemical interaction between unattacked plants reduce aphid plant acceptance with intermorph variation. J Pest Sci 88:249–257

    Article  Google Scholar 

  • Das A, Lee SH, Hyun TK, Kim SW, Kim JY (2013) Plant volatiles as method of communication. Plant Biotechnol Rep 7:9–26

    Article  Google Scholar 

  • De Wit M, Kegge W, Evers JB, Vergeer-van Eijk MH, Gankema P, Voesenek LACJ, Pierik R (2012) Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proc Natl Acad Sci USA 109:14705–14710

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaney KJ, Wawrzyniak M, Lemańczyk G, Wrzesińska D, Piesik D (2013) Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L. J Chem Ecol 39:620–629

    Article  CAS  PubMed  Google Scholar 

  • Desurmont GA, Hajek A, Agrawal AA (2014) Seasonal decline in plant defence is associated with relaxed offensive oviposition behaviour in the viburnum leaf beetle Pyrrhalta viburni. Ecol Entomol 39:589–594

    Article  Google Scholar 

  • Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV, Gleba YY (2012) Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog 8:e1002640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn H, Schmelz E, Tumlinson J (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Contreras CF, Dalvi C, Li T, Engelberth M (2013) Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS One 8:e77465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2015) Indole is an essential herbivore-induced volatile priming signaling maize. Nat Commun 6:6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farré-Armengol G, Peñuelas J, Li T, Yli-Pirilä P, Filella I, Llusia J, Blande JD (2016) Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol 209:152–160

    Article  PubMed  CAS  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–733

    Article  CAS  PubMed  Google Scholar 

  • Gagliano M, Renton M (2013) Love thy neighbour facilitation through an alternative signalling modality in plants. BMC Ecol 13:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Girling RD, Lusebrink I, Farthing E, Newman TA, Poppy GM (2013) Diesel exhaust rapidly degrades floral odours used by honeybees. Sci Rep 3:2779

    Article  PubMed  PubMed Central  Google Scholar 

  • Girón-Calva PS, Molina-Torres J, Heil M (2012) Volatile dose and exposure time impact perception in neighboring plants. J Chem Ecol 38:226–228

    Article  PubMed  CAS  Google Scholar 

  • Glinwood R, Ninkovic V, Pettersson J, Ahmed A (2004) Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol Entomol 29:188–195

    Article  Google Scholar 

  • Glinwood R, Ahmed A, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod Plant Interact 3:215–224

    Article  Google Scholar 

  • Glinwood R, Ninkovic V, Pettersson J (2011) Chemical interaction between undamaged plants—effects on herbivores and natural enemies. Phytochemistry 72:1683–1689

    Article  CAS  PubMed  Google Scholar 

  • Godard KA, White R, Bohlmann J (2008) Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306

    Article  CAS  Google Scholar 

  • Heil M, Adame-Álvarez RM (2010) Short signalling distances make plant communication a soliloquy. Biol Lett 6:843–845

    Article  PubMed  PubMed Central  Google Scholar 

  • Heil M, Karban R (2009) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno C (2007) Within-plant signaling by volatiles lead to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes K, Pearse J, Grof-Tisza P, Karban R (2015) Individual-level differences in generalist caterpillar responses to a plant–plant cue. Ecol Entomol. doi:10.1111/een.12224

    Google Scholar 

  • Johnson D, Gilbert L (2015) Interplant signalling through hyphal networks. New Phytol 205:1448–1453

    Article  PubMed  Google Scholar 

  • Kaiser B, Vogg G, Fürst UB, Albert M (2015) Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front Plant Sci 6:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Karban R (2001) Communication between sagebrush and wild tobacco in the field. Biochem Syst Ecol 29:995–1005

    Article  CAS  Google Scholar 

  • Karban R (2007) Associational resistance for mule’s ears with sagebrush neighbors. Plant Ecol 191:295–303

    Article  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  PubMed  Google Scholar 

  • Karban R, Maron J (2002) The fitness consequences of interspecific eavesdropping between plants. Ecology 83:1209–1213

    Article  Google Scholar 

  • Karban R, Shiojiri K (2009) Self-recognition affects plant communication and defense. Ecol Lett 12:502–506

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332

    Article  Google Scholar 

  • Karban R, Huntzinger M, McCall AC (2004) The specificity of eavesdropping on sagebrush by other plants. Ecology 85:1846–1852

    Article  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  PubMed  Google Scholar 

  • Karban R, Shiojiri K, Ishizaki S (2010) An air transfer experiment confirms the role of volatile cues in communication between plants. Am Nat 176:381–384

    Article  PubMed  Google Scholar 

  • Karban R, Ishizaki S, Shiojiri K (2012) Long-term demographic consequences of eavesdropping for sagebrush. J Ecol 100:932–938

    Article  Google Scholar 

  • Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY (2013) Kin recognition affects plant communication and defence. Proc R Soc B 280:20123062

    Article  PubMed  PubMed Central  Google Scholar 

  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014a) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385

    Article  PubMed  Google Scholar 

  • Karban R, Yang LH, Edwards KF (2014b) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52

    Article  PubMed  Google Scholar 

  • Kegge W, Weldegergis BT, Soler R, Vergeer-Van Eijk MV, Dicke M, Voesenek LA, Pierik R (2013) Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol 200:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kegge W, Ninkovic V, Glinwood R, Welschen RAM, Voesenek LACJ, Pierik R (2015) Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot 115:961–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler A (2015) The information landscape of plant constitutive and induced secondary metabolite production. Curr Opin Insect Sci 8:47–53

    Article  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Kikuta Y, Ueda H, Nakayama K, Katsuda Y, Ozawa R, Takabayashi J, Hatanaka A, Matsuda K (2011) Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol 52:588–596

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Lee K, Seo PJ (2014) Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighbouring plants. Plant Signal Behav 9:e28392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Blande JD (2015) Associational susceptibility in broccoli: mediated by plant volatiles, impeded by ozone. Glob Chang Biol 21:1993–2004

    Article  PubMed  Google Scholar 

  • Li T, Holopainen JK, Kokko H, Tervahauta AI, Blande JD (2012) Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants. Funct Ecol 26:176–1185

    Article  Google Scholar 

  • Loreto F, Dicke M, Schnitzler JP, Turlings TCJ (2014) Plant volatiles and the environment. Plant Cell Environ 37:1905–1908

    Article  PubMed  Google Scholar 

  • Muroi A, Ramadan A, Nishihara M, Yamamoto M, Ozawa R, Takabayashi J, Arimura G (2011) The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. PLoS One 6:e24594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V, Åhman I (2009) Aphid acceptance of Hordeum genotypes is affected by plant volatile exposure and is correlated with aphid growth. Euphytica 169:177–185

    Article  CAS  Google Scholar 

  • Ninkovic V, Olsson U, Pettersson J (2002) Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol Exp Appl 102:177–182

    Article  Google Scholar 

  • Ninkovic V, Glinwood R, Dahlin I (2009) Weed–barley interactions affect plant acceptance by aphids in laboratory and field experiments. Entomol Exp Appl 133:38–45

    Article  Google Scholar 

  • Ninkovic V, Dahlin I, Vucetic A, Petrovic-Obradovic O, Glinwood R, Webster B (2013) Volatile exchange between undamaged plants—a new mechanism affecting insect orientation in intercropping. PLoS One 8:e69431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oluwafemi S, Dewhirst SY, Veyrat N, Powers S, Bruce TJA, Caulfield JC, Pickett JA, Birkett MA (2013) Priming of production in maize of volatile organic defence compounds by the natural plant activator cis-jasmone. PLoS One 8:e62299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pearse IS, Karban R (2013) Do plant–plant signals mediate herbivory consistently in multiple taxa and ecological contexts? J Plant Interact 8:203–206

    Article  Google Scholar 

  • Pearse IS, Porensky LM, Yang LH, Stanton ML, Karban R, Bhattacharyya L, Cox R, Dove K, Higgins A, Kamoroff C, Kirk T, Knight C, Koch R, Parker C, Rollins H, Tanner K (2012) Complex consequences of herbivory and interplant cues in three annual plants. PLoS One 7:e38105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse IS, Hughes K, Shiojiri K, Ishizaki S, Karban R (2013) Interplant volatile signaling in willows: revisiting the original talking trees. Oecologia 172:869–875

    Article  PubMed  Google Scholar 

  • Pettersson J, Ninkovic V, Ahmed E (1999) Volatiles from different barley cultivars affect aphid acceptance of neighbouring plants. Acta Agric Scand Sect B-Soil Plant Sci 49:152–157

    CAS  Google Scholar 

  • Pierik R, de Wit M (2014) Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. J Exp Bot 65:2815–2824

    Article  PubMed  Google Scholar 

  • Pierik R, Ballaré CL, Dicke M (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ 37:1845–1853

    Article  PubMed  Google Scholar 

  • Piesik D, Lemńczyk G, Skoczek A, Lamparski R, Bocianowski J, Kotwica K, Delaney KJ (2011) Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Pańka D, Jeske M, Wenda-Piesik A, Delaney KJ, Weaver DK (2013) Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore. J Appl Entomol 137:296–309

    Article  CAS  Google Scholar 

  • Pinto DM, Blande JD, Nykänen R, Dong W-X, Nerg A-M, Holopainen JK (2007) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694

    Article  CAS  PubMed  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Adame-Alvarez RM, Acosta-Gallegos JA, Heil M (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103:250–260

    Article  CAS  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin PA (ed) Plant resistance to insects. American Chemical Society, Washington, DC, pp 55–68

    Chapter  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    Article  CAS  PubMed  Google Scholar 

  • Ruther J, Kleier (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiojiri K, Karban R (2006) Plant age, communication and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia 149:214–220

    Article  PubMed  Google Scholar 

  • Shiojiri K, Karban R (2008a) Seasonality of herbivory and communication between individuals of sagebrush. Arthropod Plant Interact 2:87–92

    Article  Google Scholar 

  • Shiojiri K, Karban R (2008b) Vascular systemic induced resistance for Artemisia cana and volatile communication for Artemisia douglasiana. Am Midl Nat 159:468–477

    Article  Google Scholar 

  • Shiojiri K, Karban R, Ishizaki S (2009) Volatile communication among sagebrush branches affects herbivory: timing of active cues. Arthropod Plant Interact 3:99–104

    Article  Google Scholar 

  • Shiojiri K, Ozawa R, Matsui K, Sabelis M, Takabayashi J (2012) Intermittent exposure to traces of green leaf volatiles triggers a plant response. Sci Rep 2:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Tamogami S, Rakwal R, Agrawal GK (2008) Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA–Ile activating jasmonate signaling pathway and VOCs emission. Biochem Biophys Res Commun 376:723–727

    Article  CAS  PubMed  Google Scholar 

  • Ton J, D'Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Kikuta Y, Matsuda K (2012) Plant communication mediated by individual or blended VOCs? Plant Signal Behav 7:222–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ul Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J 13:727–739

    Article  CAS  PubMed  Google Scholar 

  • Underwood N, Inouye BD, Hambäck PA (2014) A conceptual framework for associational effects: when do neighbors matter and how would we know? Q Rev Biol 89:1–19

    Article  PubMed  Google Scholar 

  • von Dahl CC, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions? Plant J 46:948–960

    Article  CAS  Google Scholar 

  • von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT (2007) Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuate. Plant J 51:293–307

    Article  CAS  Google Scholar 

  • Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V (2014) Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signal Behav 9:e29517

    Article  PubMed Central  CAS  Google Scholar 

  • Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y (2015) Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep 5:8030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao YL, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I (2011) UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighbouring plants. Plant Cell 23:3824–3852

    Article  CAS  Google Scholar 

  • Yao YL, Danna CH, Ausubel FM, Kovalchuk I (2012) Perception of volatiles produced by UV-C-irradiated plants alters the response to viral infection in naïve neighboring plants. Plant Signal Behav 7:741–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi HS, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneya K, Takabayashi J (2014) Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnol 31:409–416

    Article  CAS  Google Scholar 

  • Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, T. (2016). Neighbour Recognition Through Volatile-Mediated Interactions. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_7

Download citation

Publish with us

Policies and ethics