Skip to main content

Who’s Listening to Talking Plants?

  • Chapter
  • First Online:
Deciphering Chemical Language of Plant Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

In the last few decades, incredible advances have been made in characterising the nature, the origin and the function of plant volatile compounds. These molecules/blends regulate important functions of plant life linked to primary and secondary metabolism. In this chapter, I will focus on the role of these compounds in plant defence against insects (direct and indirect) as determined by constitutive or induced release. I will indicate the possible targets of volatile compounds that become signals in plant–plant and plant–insect communication. I will then conclude with a possible scenario for the exploitation of plant volatiles as a sustainable tool in plant protection against agricultural pests, along with gaps in current knowledge that hamper wider application in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alborn HT, Turlings TCJ, Jones JH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Arimura G-I, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  CAS  PubMed  Google Scholar 

  • Babikova Z, Gilbert L, Bruce T, Dewhirst SY, Pickett JA, Johnson D (2014a) Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Funct Ecol 28:375–385

    Article  Google Scholar 

  • Babikova Z, Gilbert L, Randall KC, Bruce TJA, Pickett JA, Johnson D (2014b) Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean (Vicia faba) to aphids. J Exp Bot 18:5231–5241

    Article  Google Scholar 

  • Ballhorn DJ, Kautz S, Lion U, Heil M (2008) Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). J Ecol 96:971–980

    Article  CAS  Google Scholar 

  • Barker AM, Molotsane R, Mueller C, Schaffner U, Staedler E (2006) Chemosensory and behavioural responses of the turnip sawfly, Athalia rosae, to glucosinolates and isothiocyanates. Chemoecology 16:209–218

    Article  CAS  Google Scholar 

  • Battaglia D, Bossi S, Cascone P, Digilio MC, Duran Prieto J, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M, Maffei ME, Massa N, Ruocco M, Sasso R, Trotta V (2013) Tomato belowground-aboveground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant Microbe Interact 26:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Bergey DR, Hoi GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    Article  CAS  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Mirabella R, Diergaarde PJ, Van Doorn A, Tissier A, Prins M, de Vos M, Haring MA, Schuurink RC, Kant MR (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA 109:20124–20129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock MR (2005) Signal crosstalk and induced resistance. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA (2013) Glucosinolates in oilseed rape: secondary metabolites that influence interactions with herbivores and their natural enemies. Ann Appl Biol 164:348–353

    Article  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC, Doherty A, Sparks CA, Woodcock CM, Birkett MA, Napier JA, Jones HD, Pickett JA (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:11183. doi:10.1038/srep11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascone P, Iodice L, Maffei ME, Bossi S, Arimura G-i, Guerrieri E (2015) Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J Plant Physiol 173:28–32

    Article  CAS  PubMed  Google Scholar 

  • Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F (2004) Insect oviposition induces volatile emission in herbaceous plants that attracts the egg parasitoid Trissolcus basalis. J Exp Biol 207:47–53

    Article  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Ann Rev Entomol 52:375–400

    Article  CAS  Google Scholar 

  • Corrado G, Sasso R, Pasquariello M, Iodice L, Carretta A, Cascone P, Ariati L, Digilio MC, Guerrieri E, Rao R (2007) Systemin regulates both systemic and volatile signalling in tomato plants. J Chem Ecol 33:669–681

    Article  CAS  PubMed  Google Scholar 

  • de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341

    Article  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33:997–1012

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Digilio MC, Corrado G, Sasso R, Coppola V, Iodice L, Pasquariello M, Bossi S, Maffei ME, Coppola M, Pennacchio F, Rao R, Guerrieri E (2010) Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. New Phytol 187:1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Digilio MC, Cascone P, Iodice L, Guerrieri E (2012) Interactions between tomato volatile organic compounds and aphid behaviour. J Plant Interact 7:322–325

    Article  CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W (1996) Relative importance of semiochemicals from first and second trophic levels in host foraging behaviour of Aphidius ervi (Hymenoptera: Braconidae). J Chem Ecol 22:1591–1605

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME (2015) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One 7:e43607

    Article  Google Scholar 

  • Frost C, Appel H, Carlson J, De Moraes C, Mescher M, Schultz J (2007) Within-plant signalling by volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498

    Article  PubMed  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609

    Article  CAS  Google Scholar 

  • Glinwood R, Gradin T, Karpinska B, Ahmed E, Jonsson L, Ninkovic V (2007) Aphid acceptance of barley exposed to volatile phytochemicals differs between plants exposed in daylight and darkness. Plant Signal Behav 2:321–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1993) Flight behaviour of the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) in response to plant and host volatiles. Eur J Entomol 90:415–421

    Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1997) Effect of adult experience on in-flight orientation to plant and plant–host complex volatiles in Aphidius ervi Haliday (Hymenoptera, Braconidae). Biol Control 10:159–165

    Article  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Tremblay E, Pennacchio F (1999) Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi (Hymenoptera: Braconidae). J Chem Ecol 25:1247–1261

    Article  CAS  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler, Baldwin IT (2008) Shared signals—‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34

    PubMed  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306

    Article  CAS  Google Scholar 

  • Heil M, Karban R (2009) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:136–144

    Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defence in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Ton J (2009) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  Google Scholar 

  • Hilker M, Fatouros NE (2015) Plant responses to insect egg deposition. Annu Rev Entomol 60:493–515

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Kobs C, Varama M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205:455–461

    PubMed  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495

    Article  CAS  PubMed  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1595–1610

    Article  Google Scholar 

  • Jones VP, Horton DR, Mills NJ, Unruh TR, Miliczky E, Shearer PW, Baker CC, Melton TD (2015) Using plant volatile traps to develop phenology models for natural enemies: an example using Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae). Biol Control (in press): doi:10.1016/j.biocontrol.2014.12.012

    Google Scholar 

  • Karban R (2011) Evolutionary ecology of plant defences—the ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347

    Article  Google Scholar 

  • Karban R (2015) Plant sensing and communication. In: Thompson JN (ed) Interspecific interactions A series. The University of Chicago Press, Chicago, London, p 240

    Google Scholar 

  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385

    Article  PubMed  Google Scholar 

  • Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob Biogeochem Cycles 16:1126

    Article  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Labandeira CC (2013) A paleobiologic perspective on plant–insect interactions. Curr Opin Plant Biol 16:414–421

    Article  PubMed  Google Scholar 

  • Landolt PJ, Brumley JA, Smithhisler CL, Biddick LL, Hofstetter RW (2000) Apple fruit infested with codling moth are more attractive to neonate codling moth larvae and possess increased amounts of (E, E)-alpha-farnesene. J Chem Ecol 26:1685–1699

    Article  CAS  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates: chemistry and ecology. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol I, 2nd edn, The chemical participants. Academic Press, San Diego, CA, pp 123–164

    Chapter  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Tumlinson JH (1995) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. J Chem Ecol 21:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  CAS  PubMed  Google Scholar 

  • Marder M (2012) Plant intentionality and the phenomenological framework of plant intelligence. Plant Signal Behav 7:1–8

    Article  Google Scholar 

  • Marder M (2013) Plant intelligence and attention. Plant Signal Behav 8:e23902

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA 107:3600–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muroi A, Ramadan A, Nishihara M, Yamamoto M, Ozawa R, Takabayashi J, Arimura G-I (2011) The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. PLoS One 6:e24594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngumbi E, Eigenbrode SD, Bosque-Perez NA, Ding H, Rodriguez A (2007) Myzus persicae is arrested more by blends than by individual compounds elevated in headspace of PLRV infected potato. J Chem Ecol 33:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Orians C (2005) Herbivores, vascular pathways and systemic induction: facts and artifacts. J Chem Ecol 31:2231–2242

    Article  CAS  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    PubMed  PubMed Central  Google Scholar 

  • Peñuelas J, Staudt M (2009) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  Google Scholar 

  • Pickett JA, Birkett MA, Bruce TJA, Chamberlain K, Gordon-Weeks R, Matthes MC, Napier JA, Smart LE, Woodcock CM (2007) Developments in aspects of ecological phytochemistry: the role of cis-jasmone in inducible defence systems in plants. Phytochemistry 68:2937–2945

    Article  CAS  PubMed  Google Scholar 

  • Poelman EH, Bruinsma M, Zhu F, Weldegergis BT, Boursault AE, Jongema Y, van Loon JJA, Vet LEM, Harvey JA, Dicke M (2012) Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLoS Biol 10:e1001435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Evol Syst 11:41–65

    Article  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin PA (ed) Plant resistance to insects. American Chemical Society, Washington DC, pp 55–68

    Chapter  Google Scholar 

  • Rostás M, Turlings TCJ (2008) Induction of systemic acquired resistance in Zea mays also enhances the plant’s attractiveness to parasitoids. Biol Control 46:178–186

    Article  Google Scholar 

  • Sasso R, Iodice L, Digilio MC, Carretta A, Ariati L, Guerrieri E (2007) Host-locating response by the aphid parasitoid Aphidius ervi to tomato plant volatiles. J Plant Interact 2:175–183

    Article  CAS  Google Scholar 

  • Sasso R, Iodice L, Woodcock CM, Pickett JA, Guerrieri E (2009) Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology 19:195–201

    Article  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Sobhy IS, Erb M, Sarhan AA, El-Husseini MM, Mandour NS, Turlings TCJ (2012) Less is more: treatment with BTH and laminarin reduces herbivore-induced volatile emissions in maize but increases parasitoid attraction. J Chem Ecol 38:348–360

    Article  CAS  PubMed  Google Scholar 

  • Sobhy IS, Erb M, Lou Y, Turlings TCJ (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos Trans R Soc B 369:20120283

    Article  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Tamogami S, Ralkwal R, Agrawal GK (2008) Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem Biophys Res Commun 376:723–727

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-induced corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turlings TCJ, Wackers FL, Vet LEM, Lewis WJ, Tumlinson JH (1993) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, NY, pp 51–78

    Chapter  Google Scholar 

  • Uefune M, Choh Y, Abe J, Shiojiri K, Sano K, Takabayashi J (2012) Application of synthetic herbivore-induced plant volatiles causes increased parasitism of herbivores in the field. J Appl Entomol 136:561–567

    Article  CAS  Google Scholar 

  • Ukeh DA, Woodcock CM, Pickett JA, Birkett MA (2012) Identification of host kairomones from maize, Zea mays, for the maize weevil, Sitophilus zeamais. J Chem Ecol 38:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemicals. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vinson SB (1981) In: Nordlund DA, Lewis WJ, Jones RL (eds) Semiochemicals: their role in pest control. Wiley, New York, NY

    Google Scholar 

  • Von Mérey GE, Veyrat N, D'alessandro M, Turlings TCJ (2013) Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Front Plant Sci 4:209

    Google Scholar 

  • Walling L (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Werner BJ, Mowry TM, Bosque-Perez NA, Ding HJ, Eigenbrode SD (2009) Changes in green peach aphid responses to potato leafroll virus-induced volatiles emitted during disease progression. Environ Entomol 38:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Kliebenstein D, Lambrix V, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist herbivores. Recent Adv Phytochem 37:101–125

    Article  CAS  Google Scholar 

  • Zhu J, Park K-C (2005) Methyl salicylate, a soybean aphid induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733–1746

    Article  CAS  PubMed  Google Scholar 

  • Zumr V (1989) Attractiveness of the terpene α-pinene to the large pine shoot beetle, Blastophagus piniperda (L.) (Col., Scolytidae). J Appl Entomol 107:141–144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Guerrieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guerrieri, E. (2016). Who’s Listening to Talking Plants?. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_5

Download citation

Publish with us

Policies and ethics