Measuring Rapid Changes in Plant Volatiles at Different Spatial Levels

  • Pawel K. MisztalEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM)


The majority of volatile chemical measurements related to plant communication processes have been conducted at relatively small spatial scales. Relatively little is known about how volatile-mediated signalling functions at larger scales, such as large plant, ecosystem or region. To understand these issues, real-time measurement of volatile organic compounds (VOC), which has been successfully used in the atmospheric science community for almost two decades, is required. When VOCs and vertical wind speed are measured at sufficiently high temporal resolution, eddy correlation techniques can be used to provide direct information about the ecosystem biosphere–atmosphere exchange. These very fast measurements can reflect the true dynamics of the concentrations of key semiochemicals, which could otherwise be averaged out over longer time periods. Furthermore, they allow for direct measurement of their ecosystem net flux from a well-defined area, which enables a holistic understanding of a habitat’s chemistry and physics. This chapter is intended to inspire chemical ecologists to view the bigger picture in chemical communication by applying real-time measurement approaches at larger scales. This chapter presents the principles of real-time measurements of semiochemicals by PTR-MS and the eddy covariance technique along with examples of their current and potential applications in field measurements.


Eddy Covariance Chemical Ecology Positive Matrix Factorization Volatile Organic Compound Emission Total Volatile Organic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Glossary of Technical Terms and Acronyms


Gas chromatography mass spectrometry


Planetary boundary layer


Proton transfer reaction mass spectrometry


Quadrupole mass spectrometer (a detector used in a classic PTR-MS resolving ions at a unit mass resolution with 1 Da, e.g. 153 for protonated methyl salicylate).


Solid-phase micro-extraction fibres.




Time-of-Flight detector (a detector used in a novel type of PTR-MS resolving an exact mass within ~1 mDa, e.g. 153.055 for protonated methyl salicylate)


Volatile organic compounds


Biogenic VOC


  1. Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, Mechtcheriakov S (2004) Applications of breath gas analysis in medicine. Int J Mass Spectom Ion Process 239(2–3):227–233CrossRefGoogle Scholar
  2. Arya PS (2001) Introduction to micrometeorology, vol 79. Academic Press, LondonGoogle Scholar
  3. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9(4):479–492CrossRefGoogle Scholar
  4. Bamberger I, Hortnagl L, Ruuskanen TM, Schnitzhofer R, Muller M, Graus M, Karl T, Wohlfahrt G, Hansel A (2011) Deposition fluxes of terpenes over grassland. J Geophys Res Atmos 116. doi: 10.1029/2010jd015457
  5. Biasioli F, Gasperi F, Yeretzian C, Märk TD (2011) PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal Chem 30(7):968–977CrossRefGoogle Scholar
  6. Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97(16):9329–9334. doi: 10.1073/pnas.160241697 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109(3):861–896. doi: 10.1021/cr800364q CrossRefPubMedGoogle Scholar
  8. Bouvier-Brown NC, Holzinger R, Palitzsch K, Goldstein AH (2007) Quantifying sesquiterpene and oxygenated terpene emissions from live vegetation using solid-phase microextraction fibers. J Chromatogr A 1161 (1):113–120Google Scholar
  9. Bouvier-Brown NC, Goldstein AH, Worton DR, Matross DM, Gilman JB, Kuster WC, Welsh-Bon D, Warneke C, de Gouw JA, Cahill TM, Holzinger R (2009) Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere. Atmos Chem Phys 9(6):2061–2074CrossRefGoogle Scholar
  10. Brilli F, Hörtnagl L, Bamberger I, Schnitzhofer R, Ruuskanen TM, Hansel A, Loreto F, Wohlfahrt G (2012) Qualitative and quantitative characterization of volatile organic compound emissions from cut grass. Environ Sci Technol 46(7):3859–3865. doi: 10.1021/es204025y CrossRefPubMedGoogle Scholar
  11. Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Oceanic Tech 7(2):349–352CrossRefGoogle Scholar
  12. Chapman JW, Drake VA, Reynolds DR (2011) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356CrossRefPubMedGoogle Scholar
  13. Danner H, Samudrala D, Cristescu SM, Van Dam NM (2012) Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 38(6):785–794CrossRefPubMedPubMedCentralGoogle Scholar
  14. Davison B, Brunner A, Ammann C, Spirig C, Jocher M, Neftel A (2008) Cut-induced VOC emissions from agricultural grasslands. Plant Biol 10(1):76–85. doi: 10.1055/s-2007-965043 CrossRefPubMedGoogle Scholar
  15. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26(2):223–257. doi: 10.1002/mas.20119 CrossRefPubMedGoogle Scholar
  16. Desjardins RL (1977) Description and evaluation of a sensible heat flux detector. Bound Lay Meteorol 11(2):147–154CrossRefGoogle Scholar
  17. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135(4):1893–1902CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ellis AM, Mayhew CA (2013) Proton transfer reaction mass spectrometry: principles and applications. Wiley, ChichesterGoogle Scholar
  19. Engelberth J, Alborn H, Schmelz E, Tumlinson J (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fares S, Gentner DR, Park JH, Ormeno E, Karlik J, Goldstein AH (2011) Biogenic emissions from Citrus species in California. Atmos Environ 45(27):4557–4568. doi: 10.1016/j.atmosenv.2011.05.066 CrossRefGoogle Scholar
  21. Farneti B, Khomenko I, Cappellin L, Ting V, Romano A, Biasioli F, Costa G, Costa F (2014) Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics 11(4):838–850Google Scholar
  22. Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee WMX, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis, vol 29. Kluwer Academic Publishers, Dordrecht, pp 181–203CrossRefGoogle Scholar
  23. Gentner DR, Isaacman G, Worton DR, Chan AW, Dallmann TR, Davis L, Liu S, Day DA, Russell LM, Wilson KR (2012) Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc Natl Acad Sci USA 109(45):18318–18323CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609CrossRefGoogle Scholar
  25. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41(5):1514–1521CrossRefPubMedGoogle Scholar
  26. Graus M, Hansel A, Wisthaler A, Lindinger C, Forkel R, Hauff K, Klauer M, Pfichner A, Rappengluck B, Steigner D, Steinbrecher R (2006) A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously. Atmos Environ 40:S43–S54CrossRefGoogle Scholar
  27. Guenther A (2002) Trace gas emission measurements. In: Burden et al (eds) Environmental monitoring handbook, vol 24. McGraw-Hill, New York, NY, pp 1–18Google Scholar
  28. Guenther A (2013) Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. ISRN Atmopsheric Sciences, Article ID 786290:1–27. doi:10.1155/2013/786290Google Scholar
  29. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100(D5):8873–8892. doi: 10.1029/94jd02950 CrossRefGoogle Scholar
  30. Guenther A, Greenberg J, Harley P, Helmig D, Klinger L, Vierling L, Zimmerman P, Geron C (1996) Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands. Tree Physiol 16:17–24CrossRefPubMedGoogle Scholar
  31. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5(6):1471–1492. doi: 10.5194/gmd-5-1471-2012 CrossRefGoogle Scholar
  32. Guha A, Gentner DR, Weber RJ, Provencal R, Goldstein AH (2015) Source apportionment of methane and nitrous oxide in California’s San Joaquin Valley at CalNex 2010 via positive matrix factorization. Atmos Chem Phys 15(20):12043–12063. doi: 10.5194/acp-15-12043-2015 CrossRefGoogle Scholar
  33. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton-transfer reaction mass-spectrometry—online trace gas-analysis at the Ppb level. Int J Mass Spectom Ion Process 150:609–619CrossRefGoogle Scholar
  34. Hartungen E, Wisthaler A, Mikoviny T, Jaksch D, Boscaini E, Dunphy PJ, Mark TD (2004) Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: determination of Henry’s law constants and axillary odour investigations. Int J Mass Spectom Ion Process 239(2–3):243–248CrossRefGoogle Scholar
  35. Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817CrossRefPubMedGoogle Scholar
  36. Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13(6):264–272CrossRefPubMedGoogle Scholar
  37. Hellén H, Dommen J, Metzger A, Gascho A, Duplissy J, Tritscher T, Prevot ASH, Baltensperger U (2008) Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols. Environ Sci Technol 42(19):7347–7353. doi: 10.1021/es801279m CrossRefPubMedGoogle Scholar
  38. Holzinger R, Williams J, Herrmann F, Lelieveld J, Donahue NM, Röckmann T (2010) Aerosol analysis using a thermal-desorption proton-transfer-reaction mass spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmos Chem Phys 10(5):2257–2267CrossRefGoogle Scholar
  39. Jones C, Kato S, Nakashima Y, Kajii Y (2014) A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air. Atmos Meas Tech 7(5):1259–1275CrossRefGoogle Scholar
  40. Jordan A, Haidacher S, Hanel G, Hartungen E, Mark L, Seehauser H, Schottkowsky R, Sulzer P, Mark TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectom Ion Process 286(2–3):122–128. doi: 10.1016/j.ijms.2009.07.005 CrossRefGoogle Scholar
  41. Karl TG, Spirig C, Rinne J, Stroud C, Prevost P, Greenberg J, Fall R, Guenther A (2002) Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmos Chem Phys 2(4):279–291. doi: 10.5194/acp-2-279-2002 CrossRefGoogle Scholar
  42. Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation. J Geophys Res Atmos 1984–2012 109((D18)):D18306CrossRefGoogle Scholar
  43. Karl T, Guenther A, Turnipseed A, Patton EG, Jardine K (2008) Chemical sensing of plant stress at the ecosystem scale. Biogeosciences 5(5):1287–1294CrossRefGoogle Scholar
  44. Kaser L, Karl T, Schnitzhofer R, Graus M, Herdlinger-Blatt I, DiGangi J, Sive B, Turnipseed A, Hornbrook R, Zheng W (2012) Comparison of different real time VOC measurement techniques in a ponderosa pine forest. Atmos Chem Phys Discuss 12:27955–27988CrossRefGoogle Scholar
  45. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72(1):1–120CrossRefGoogle Scholar
  46. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound Lay Meteorol 99(2):207–224CrossRefGoogle Scholar
  47. Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31(10):1410–1415CrossRefPubMedGoogle Scholar
  48. Lee X, Massman W, Law B (2006) Handbook of micrometeorology: a guide for surface flux measurement and analysis, vol 29. Springer, DordrechtGoogle Scholar
  49. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS)—medical applications, food control and environmental research. Int J Mass Spectom Ion Process 173(3):191–241CrossRefGoogle Scholar
  50. Luo J, Huang W, Yuan L, Zhao C, Du S, Zhang J, Zhao J (2013) Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Precis Agric 14(2):151–161. doi: 10.1007/s11119-012-9283-4 CrossRefGoogle Scholar
  51. McFrederick QS, Fuentes JD, Roulston TA, Kathilankal JC, Lerdau M (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160(3):411–420CrossRefPubMedGoogle Scholar
  52. Milli R, Koch UT, de Kramer JJ (1997) EAG measurement of pheromone distribution in apple orchards treated for mating disruption of Cydia pomonella. Entomol Exp Appl 82(3):289–297CrossRefGoogle Scholar
  53. Misztal PK, Owen SM, Guenther AB, Rasmussen R, Geron C, Harley P, Phillips GJ, Ryan A, Edwards DP, Hewitt CN, Nemitz E, Siong J, Heal MR, Cape JN (2010) Large estragole fluxes from oil palms in Borneo. Atmos Chem Phys 10(9):4343–4358. doi: 10.5194/acp-10-4343-2010 CrossRefGoogle Scholar
  54. Misztal P, Heal M, Nemitz E, Cape J (2012) Development of PTR-MS selectivity for structural isomers: monoterpenes as a case study. Int J Mass Spectom Ion Process 310:10–19CrossRefGoogle Scholar
  55. Misztal PK, Karl T, Weber R, Jonsson HH, Guenther AB, Goldstein AH (2014) Airborne flux measurements of biogenic isoprene over California. Atmos Chem Phys 14(19):10631–10647. doi: 10.5194/acp-14-10631-2014 CrossRefGoogle Scholar
  56. Misztal PK, Hewitt CN, Wildt J, Blande JD, Eller ASD, Fares S, Gentner DR, Gilman JB, Graus M, Greenberg J, Guenther AB, Hansel A, Harley P, Huang M, Jardine K, Karl T, Kaser L, Keutsch FN, Kiendler-Scharr A, Kleist E, Lerner BM, Li T, Mak J, Nölscher AC, Schnitzhofer R, Sinha V, Thornton B, Warneke C, Wegener F, Werner C, Williams J, Worton DR, Yassaa N, Goldstein AH (2015) Atmospheric benzenoid emissions from plants rival those from fossil fuels. Sci Rep 5:12064. doi: 10.1038/srep12064 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moncrieff J, Valentini R, Greco S, Guenther S, Ciccioli P (1997) Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. J Exp Bot 48(5):1133–1142. doi: 10.1093/jxb/48.5.1133 CrossRefGoogle Scholar
  58. Nemitz E, Sutton MA, Gut A, San José R, Husted S, Schjoerring JK (2000) Sources and sinks of ammonia within an oilseed rape canopy. Agr Forest Meteorol 105(4):385–404CrossRefGoogle Scholar
  59. Nemitz E, Flynn M, Williams PI, Milford C, Theobald MR, Blatter A, Gallagher MW, Sutton MA (2001) A relaxed eddy accumulation system for the automated measurement of atmospheric ammonia fluxes. Water Air Soil Pollut Focus 1(5):189–202CrossRefGoogle Scholar
  60. Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Niitepõld K, Hanski I (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Natl Acad Sci USA 105(49):19090–19095CrossRefPubMedPubMedCentralGoogle Scholar
  61. Owen SM, MacKenzie AR, Stewart H, Donovan R, Hewitta CN (2003) Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Ecol Appl 13(4):927–938CrossRefGoogle Scholar
  62. Park J-H, Goldstein A, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013a) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341(6146):643–647CrossRefPubMedGoogle Scholar
  63. Park JH, Goldstein AH, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013b) Eddy covariance emission and deposition flux measurements using proton transfer reaction–time of flight–mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes. Atmos Chem Phys 13(3):1439–1456. doi: 10.5194/acp-13-1439-2013 CrossRefGoogle Scholar
  64. Peñuelas J, Llusià J, Filella I (2007) Methyl salicylate fumigation increases monoterpene emission rates. Biol Plant 51(2):372–376CrossRefGoogle Scholar
  65. Reichstein M, Bahn M, Mahecha MD, Kattge J, Baldocchi DD (2014) Linking plant and ecosystem functional biogeography. Proc Natl Acad Sci USA 111(38):13697–13702CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rinne HJI, Guenther AB, Warneke C, de Gouw JA, Luxembourg SL (2001) Disjunct eddy covariance technique for trace gas flux measurements. Geophys Res Lett 28(16):3139–3142CrossRefGoogle Scholar
  67. Ruuskanen TM, Mueller M, Schnitzhofer R, Karl T, Graus M, Bamberger I, Hortnagl L, Brilli F, Wohlfahrt G, Hansel A (2011) Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF. Atmos Chem Phys 11(2):611–625. doi: 10.5194/acp-11-611-2011 CrossRefGoogle Scholar
  68. Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real‐time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138(2):123–133CrossRefPubMedGoogle Scholar
  69. Schripp T, Etienne S, Fauck C, Fuhrmann F, Märk L, Salthammer T (2014) Application of proton‐transfer‐reaction‐mass‐spectrometry for indoor air quality research. Indoor Air 24(2):178–189CrossRefPubMedGoogle Scholar
  70. Shaw MD, Lee JD, Davison B, Vaughan A, Purvis RM, Lewis AC, Hewitt CN (2014) Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK. Atmos Chem Phys Discuss 14(19):27335–27371. doi: 10.5194/acpd-14-27335-2014 CrossRefGoogle Scholar
  71. Steiner A, Pressley S, Botros A, Jones E, Chung S, Edburg S (2011) Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign. Atmos Chem Phys 11(23):11921–11936CrossRefGoogle Scholar
  72. Sulzer P, Hartungen E, Hanel G, Feil S, Winkler K, Mutschlechner P, Haidacher S, Schottkowsky R, Gunsch D, Seehauser H (2014) A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): high speed due to extreme sensitivity. Int J Mass Spectom Ion Process 368:1–5CrossRefGoogle Scholar
  73. Tan KH, Nishida R (2012) Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J Insect Sci 12(1):56PubMedPubMedCentralGoogle Scholar
  74. Tholl D, Boland W, Hansel A, Loreto F, Röse US, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45(4):540–560CrossRefPubMedGoogle Scholar
  75. Warneke C, Veres P, Murphy SM, Soltis J, Field RA, Graus MG, Koss A, Li SM, Li R, Yuan B, Roberts JM, de Gouw JA (2015) PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmos Meas Tech 8(1):411–420. doi: 10.5194/amt-8-411-2015 CrossRefGoogle Scholar
  76. Yi H, Heil M, Adame-Alvarez R, Ballhorn D, Ryu C (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of California at BerkeleyBerkeleyUSA

Personalised recommendations