Temporal Dynamics of Plant Volatiles: Mechanistic Bases and Functional Consequences

  • Meredith C. SchumanEmail author
  • Henrique A. Valim
  • Youngsung Joo
Part of the Signaling and Communication in Plants book series (SIGCOMM)


Plant volatiles comprise thousands of low-molecular weight, hydrophobic molecules that are classified as ‘secondary’ (specialized) metabolites, but are closely related to ‘primary’ (general) metabolites such as fatty acids, amino acids, sterols and carotenoids. In addition to having important physiological functions, these specialized small molecules have a large influence on plants’ ecological interactions. By emitting particular blends of volatiles, plants can provide detailed information about their current physiological and ecological states and even manipulate other organisms. In fact, the timing of volatile biosynthesis and emission may be as critical to function as the amount and composition of volatile blends. Here, we critically review the known and hypothesized effects of phenological changes in plant volatile emission, their regulation and importance for function.


Circadian Clock Plant Volatile Ontogenetic Change Volatile Emission Circadian Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Max Planck Society; the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118); ERC Advanced Grant to Ian T. Baldwin number 293926; and the Global Research Lab program (2012055546) from the National Research Foundation of Korea for funding.


  1. Allison JD, Hare JD (2009) Learned and naïve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytol 184:768–782PubMedCrossRefGoogle Scholar
  2. Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078PubMedCrossRefGoogle Scholar
  3. Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS (2013) Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. Elife 2:e00421PubMedPubMedCentralGoogle Scholar
  4. Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170PubMedCrossRefGoogle Scholar
  6. Arimura G, Köpke S, Kunert M, Volpe V, David A, Brand P, Dabrowska P, Maffei ME, Boland W (2008) Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol 146:965–973PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15:118–125PubMedCrossRefGoogle Scholar
  8. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321PubMedCrossRefGoogle Scholar
  9. Baldwin IT (1994) Chemical changes rapidly induced by folivory. In: Bernays EA (ed) Insect–plant interactions, vol V. CRC Press, Boca Raton, FL, pp 2–23Google Scholar
  10. Baldwin IT (2010) Plant volatiles. Curr Biol 20:R392–R397PubMedCrossRefGoogle Scholar
  11. Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279PubMedCrossRefGoogle Scholar
  12. Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: “Talking trees” in the genomics era. Science 311:812–815PubMedCrossRefGoogle Scholar
  13. Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493PubMedCrossRefGoogle Scholar
  14. Bate NJ, Sivasankar S, Moxon C, Riley JM, Thompson JE, Rothstein SJ (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol 117:1393–1400PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 4:121–130Google Scholar
  16. Berkov A, Meurer-Grimes B, Purzycki KL (2000) Do Lecythidaceae specialists (Coleoptera, Cerambycidae) shun fetid tree species? Biotropica 32:440–451CrossRefGoogle Scholar
  17. Bhattacharya S, Baldwin IT (2012) The post-pollination ethylene burst and the continuation of floral advertisement are harbingers of non-random mate selection in Nicotiana attenuata. Plant J 71:587–601PubMedCrossRefGoogle Scholar
  18. Boland W, Gäbler A (1989) Biosynthesis of homoterpenes in higher plants. Helv Chim Acta 72:247–253CrossRefGoogle Scholar
  19. Bolen RH, Green SM (1997) Use of olfactory cues in foraging by owl monkeys (Aotus nancymai) and capuchin monkeys (Cebus apella). J Comp Psychol 111:152–158PubMedCrossRefGoogle Scholar
  20. Bouvier F, Isner J-C, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194PubMedCrossRefGoogle Scholar
  21. Brattsten LB (1983) Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores. In: Hedin P (ed) Plant resistance to insects, 208th edn. American Chemical Society, Washington, DC, pp 173–195CrossRefGoogle Scholar
  22. Birkett MA, Campbell CA, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, et al. (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334Google Scholar
  23. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611PubMedCrossRefGoogle Scholar
  24. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274PubMedCrossRefGoogle Scholar
  25. Bryant JP, Reichardt PB, Clausen TP, Provenza FD, Kuropat PJ (1992) Woody plant–mammal interactions. In: Berenbaum MR, Rosenthal GA (eds) Herbivores and their interactions with secondary plant metabolites, 2nd edn. Academic Press, Inc., San Diego, CA, USA, pp 343–370Google Scholar
  26. Calogirou A (1999) Gas-phase terpene oxidation products: a review. Atmos Environ 33:1423–1439CrossRefGoogle Scholar
  27. Camara B, Bouvier F (2004) Oxidative remodeling of plastid carotenoids. Arch Biochem Biophys 430:16–21PubMedCrossRefGoogle Scholar
  28. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229PubMedCrossRefGoogle Scholar
  29. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedPubMedCentralGoogle Scholar
  30. Danner H, Samudrala D, Cristescu SM, Van Dam NM (2012) Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 38:785–794PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Domenico S, Tsesmetzis N, Di Sansebastiano GP, Hughes RK, Casey R, Santino A, De Domenico S, Tsesmetzis N, Pietro G, Sansebastiano D et al (2007) Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes. BMC Plant Biol 7:58PubMedPubMedCentralCrossRefGoogle Scholar
  32. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH, De Moraes CM, Pare PW (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573CrossRefGoogle Scholar
  33. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580PubMedCrossRefGoogle Scholar
  34. Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176PubMedCrossRefGoogle Scholar
  35. Delphia CM, Rohr JR, Stephenson AG, De Moraes CM, Mescher MC (2009) Effects of genetic variation and inbreeding on volatile production in a field population of horsenettle. Int J Plant Sci 170:12–20CrossRefGoogle Scholar
  36. Demole E, Lederer E, Mercier D (1962) Isolement et determination de la structure du jasmonate de methyle, constituant odorant caractaristique de l’essence de jasmin. Helv Chim Acta 45:675–685CrossRefGoogle Scholar
  37. Deng W, Hamilton-kemp TR, Nielsen MT, Andersen RA, Collins GB, Hildebrand DF (1993) Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J Agric Food Chem 41:506–510CrossRefGoogle Scholar
  38. Desurmont GA, Laplanche D, Schiestl FP, Turlings TCJ (2015) Floral volatiles interfere with plant attraction of parasitoids: ontogeny-dependent infochemical dynamics in Brassica rapa. BMC Ecol 15:17PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dicke M (1986) Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Tetranycus urticae. Physiol Entomol 11:251–262CrossRefGoogle Scholar
  40. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.”. Trends Plant Sci 15:167–175PubMedCrossRefGoogle Scholar
  41. Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922CrossRefGoogle Scholar
  42. Diezel C, Allmann S, Baldwin IT (2011) Mechanisms of optimal defense patterns in Nicotiana attenuata: flowering attenuates herbivory-elicited ethylene and jasmonate signaling. J Integr Plant Biol 53:971–983PubMedCrossRefGoogle Scholar
  43. Dinh ST, Baldwin IT, Galis I (2013) The HERBIVORE ELICITOR-REGULATED1 (HER1) gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. Plant Physiol 162:2106–2124PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J (2003) (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dudareva N, Negre F, Nagegowda D, Orlova I (2006) Plant volatiles: recent advances and future perspectives. CRC Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  49. Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects, vol 10, Recent advances in phytochemistry. Springer, New York, NY, pp 1–40CrossRefGoogle Scholar
  50. Fenske MP, Hewett Hazelton KD, Hempton AK, Shim JS, Yamamoto BM, Riffell JA, Imaizumi T (2015) Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proc Natl Acad Sci USA 31:9775–9780CrossRefGoogle Scholar
  51. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350PubMedCrossRefGoogle Scholar
  52. Fox LR (1981) Defense and dynamics in plant-herbivore systems. Am Zool 21:853–864CrossRefGoogle Scholar
  53. Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–734PubMedCrossRefGoogle Scholar
  54. Gaquerel E, Weinhold A, Baldwin IT (2009) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the plant’s elicited volatile emissions. Plant Physiol 149:1408–1423PubMedPubMedCentralCrossRefGoogle Scholar
  55. Georgelin E, Loeuille N (2014) Dynamics of coupled mutualistic and antagonistic interactions, and their implications for ecosystem management. J Theor Biol 346:67–74PubMedCrossRefGoogle Scholar
  56. Glinwood R, Ninkovic V, Pettersson J (2011) Chemical interaction between undamaged plants—effects on herbivores and natural enemies. Phytochemistry 72:1683–1689PubMedCrossRefGoogle Scholar
  57. Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819PubMedCrossRefGoogle Scholar
  58. Goodspeed D, Chehab EW, Min-Venditti A, Braam J, Covington MF (2012) Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc Natl Acad Sci USA 109:4674–4677PubMedPubMedCentralCrossRefGoogle Scholar
  59. Greenfield M (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, OxfordGoogle Scholar
  60. Grote R, Morfopoulos C, Niinemets Ü, Sun Z, Keenan TF, Pacifico F, Butler T (2014) A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. Plant Cell Environ 37:1965–1980PubMedPubMedCentralCrossRefGoogle Scholar
  61. Halitschke R, Baldwin IT (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36:794–807PubMedCrossRefGoogle Scholar
  62. Halitschke R, Kessler A, Kahl J, Lorenz A, Baldwin IT (2000) Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417CrossRefGoogle Scholar
  63. Halitschke R, Ziegler J, Keinänen M, Baldwin IT (2004) Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. Plant J 40:35–46PubMedCrossRefGoogle Scholar
  64. Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals—“alarm calls” from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34PubMedGoogle Scholar
  65. Harborne JB (1973) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall Ltd., LondonGoogle Scholar
  66. Hare JD (2007) Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii. J Chem Ecol 33:2028–2043PubMedCrossRefGoogle Scholar
  67. Hare JD (2010) Ontogeny and season constrain the production of herbivore-inducible plant volatiles in the field. J Chem Ecol 36:1363–1374PubMedPubMedCentralCrossRefGoogle Scholar
  68. Harley P, Eller A, Guenther A, Monson RK (2014) Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Oecologia 176:35–55PubMedCrossRefGoogle Scholar
  69. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846PubMedCrossRefGoogle Scholar
  70. Hatanaka A, Kajiwara T, Sekiya J (1987) Biosynthetic pathway for C6-aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44:341–361CrossRefGoogle Scholar
  71. Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144PubMedCrossRefGoogle Scholar
  72. Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472PubMedPubMedCentralCrossRefGoogle Scholar
  73. Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168PubMedPubMedCentralCrossRefGoogle Scholar
  74. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  75. Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connétable S, Kuhlemeier C (2005) The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta 222:141–150PubMedCrossRefGoogle Scholar
  76. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184PubMedCrossRefGoogle Scholar
  77. Howe G, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  78. Hsu PY, Harmer SL (2013) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249PubMedPubMedCentralCrossRefGoogle Scholar
  79. Inderjit, von Dahl CC, Baldwin IT (2009) Use of silenced plants in allelopathy bioassays: a novel approach. Planta 229:569–575PubMedCrossRefGoogle Scholar
  80. Jander G (2012) Timely plant defenses protect against caterpillar herbivory. Proc Natl Acad Sci USA 109:4343–4344PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jardine K, Barron-Gafford GA, Norman JP, Abrell L, Monson RK, Meyers KT, Pavao-Zuckerman M, Dontsova K, Kleist E, Werner C et al (2012) Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light–dark transitions. Photosynth Res 113:321–333PubMedCrossRefGoogle Scholar
  82. Jardine AB, Jardine KJ, Fuentes JD, Martin ST, Martins G, Durgante F, Carneiro V, Higuchi N, Manzi AO, Chambers JQ (2015) Highly reactive light-dependent monoterpenes in the Amazon. Geophys Res Lett 42:1576–1583CrossRefGoogle Scholar
  83. Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825PubMedCrossRefGoogle Scholar
  84. Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC (2014) A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J 78:1060–1072PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072PubMedCrossRefGoogle Scholar
  86. Karban R (2007) Experimental clipping of sagebrush inhibits seed germination of neighbours. Ecol Lett 10:791–797PubMedCrossRefGoogle Scholar
  87. Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71CrossRefGoogle Scholar
  88. Kegge W, Ninkovic V, Glinwood R, Welschen RAM, Voesenek LACJ, Pierik R (2015) Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot 115:961–970PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144PubMedCrossRefGoogle Scholar
  90. Kessler A, Halitschke R (2007) Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Curr Opin Plant Biol 10:409–414PubMedCrossRefGoogle Scholar
  91. Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292PubMedCrossRefGoogle Scholar
  92. Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202PubMedCrossRefGoogle Scholar
  93. Kessler A, Halitschke R, Poveda K (2011) Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant–pollinator interactions. Ecology 92:1769–1780PubMedCrossRefGoogle Scholar
  94. Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2:1019–1025PubMedCrossRefGoogle Scholar
  95. Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59PubMedCrossRefGoogle Scholar
  96. Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347PubMedPubMedCentralCrossRefGoogle Scholar
  97. Krumm T, Bandemer K, Boland W (1995) Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates for jasmonic acid as intermediates in the octadecanoid signal. FEBS Lett 377:523–529PubMedCrossRefGoogle Scholar
  98. Lange BM (2015) The evolution of plant secretory structures and the emergence of terpenoid chemical diversity. Annu Rev Plant Biol 66:139–159PubMedCrossRefGoogle Scholar
  99. Lehmann P, Or D (2015) Effects of stomata clustering on leaf gas exchange. New Phytol 207:1015–1025PubMedCrossRefGoogle Scholar
  100. Lerdau M, Gray D (2003) Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol 157:199–211CrossRefGoogle Scholar
  101. Lerdau M, Litvak M, Monson R (1994) Plant chemical defense: monoterpenes and the growth-differentiation balance hypothesis. Trends Ecol Evol 9:58–61PubMedCrossRefGoogle Scholar
  102. Li T, Holopainen JK, Kokko H, Tervahauta AI, Blande JD (2012) Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants. Funct Ecol 26:1176–1185CrossRefGoogle Scholar
  103. Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler J-P (2007) Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 143:540–551PubMedPubMedCentralCrossRefGoogle Scholar
  104. Loomis WE (1932) Growth-differentiation balance vs carbohydrate-nitrogen ratio. Proc Am Soc Hortic Sci 29:240–245Google Scholar
  105. Loomis WE (1953) Growth and differentiation—an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, IA, pp 1–17Google Scholar
  106. Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166PubMedCrossRefGoogle Scholar
  107. Loughrin JH, Manukian ARA, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840PubMedPubMedCentralCrossRefGoogle Scholar
  108. Luft S, Curio E, Tacud B (2003) The use of olfaction in the foraging behaviour of the golden-mantled flying fox, Pteropus pumilus, and the greater musky fruit bat, Ptenochirus jagori (Megachiroptera: Pteropodidae). Naturwissenschaften 90:84–87PubMedGoogle Scholar
  109. Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. South Afr J Bot 76:612–631CrossRefGoogle Scholar
  110. Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316PubMedCrossRefGoogle Scholar
  111. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280PubMedCrossRefGoogle Scholar
  112. Matsui K, Minami A, Hornung E, Shibata H (2006) Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Planta 67:649–657Google Scholar
  113. McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310CrossRefGoogle Scholar
  114. McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320CrossRefGoogle Scholar
  115. McKey D (1979) The distribution of secondary compounds within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, NY, pp 55–133Google Scholar
  116. Meldau S, Baldwin IT (2013) Just in time: circadian defense patterns and the optimal defense hypothesis. Plant Signal Behav 8:e24410PubMedPubMedCentralCrossRefGoogle Scholar
  117. Meldau S, Wu J, Baldwin IT (2009) Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata’s susceptibility to herbivores in the glasshouse and in nature. New Phytol 181:161–173PubMedCrossRefGoogle Scholar
  118. Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou EA, de Vries M, Boersma MR, Breit TM, Haring MA, Schuurink RC (2015) WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. Plant J 83:1082–1096PubMedCrossRefGoogle Scholar
  119. Mita G, Quarta A, Fasano P, De Paolis A, Pietro G, Sansebastiano D, Perrotta C, Iannacone R, Belfield E, Hughes R et al (2005) Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies. J Exp Bot 419:2321–2333CrossRefGoogle Scholar
  120. Mizutani J (1999) Selected allelochemicals. CRC Crit Rev Plant Sci 18:653–671CrossRefGoogle Scholar
  121. Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1–37CrossRefGoogle Scholar
  122. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973PubMedCrossRefGoogle Scholar
  123. Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186PubMedCrossRefGoogle Scholar
  124. Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939PubMedCrossRefGoogle Scholar
  125. Oh Y, Baldwin IT, Gális I (2012) NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. Plant Physiol 159:769–788PubMedPubMedCentralCrossRefGoogle Scholar
  126. Oyama-Okubo N, Ando T, Watanabe N, Marchesi E, Uchida K, Nakayama M (2005) Emission mechanism of floral scent in Petunia axillaris. Biosci Biotechnol Biochem 69:773–777PubMedCrossRefGoogle Scholar
  127. Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398PubMedCrossRefGoogle Scholar
  128. Paschold A, Halitschke R, Baldwin IT (2006) Using “mute” plants to translate volatile signals. Plant J 45:275–291PubMedCrossRefGoogle Scholar
  129. Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404PubMedCrossRefGoogle Scholar
  130. Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106:1533–1540PubMedPubMedCentralGoogle Scholar
  131. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW (2004) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant J 38:310–319PubMedCrossRefGoogle Scholar
  133. Pokhilko A, Bou-Torrent J, Pulido P, Rodríguez-Concepción M, Ebenhöh O (2015) Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytol 206:1075–1085PubMedCrossRefGoogle Scholar
  134. Preston CA, Laue G, Baldwin IT (2001) Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal? Biochem Syst Ecol 29:1007–1023CrossRefGoogle Scholar
  135. Qualley AV, Dudareva N (2008) Aromatic volatiles and their involvement in plant defense. In: Schaller A (ed) Induced plant resistance to herbivores. Springer, The Netherlands, pp 409–432CrossRefGoogle Scholar
  136. Raguso RA (2004) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440PubMedCrossRefGoogle Scholar
  137. Raguso RA, Levin RA, Foose SE, Holmberg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284PubMedCrossRefGoogle Scholar
  138. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  139. Renne IJ, Sinn BT, Shook GW, Sedlacko DM, Dull JR, Villarreal D, Hierro JL (2014) Eavesdropping in plants: delayed germination via biochemical recognition. J Ecol 102:86–94CrossRefGoogle Scholar
  140. Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, NY, pp 1–55Google Scholar
  141. Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin P (ed) Plant resistance to insects. American Chemical Society, Washington, DC, pp 55–68CrossRefGoogle Scholar
  142. Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Recent advances in phytochemistry. Plenum Press, New York, NY, pp 168–213Google Scholar
  143. Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15CrossRefGoogle Scholar
  144. Rodríguez-Concepción M, Campos N, Ferrer A, Boronat A (2013) Isoprenoid synthesis in plants and microorganisms. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches. Springer, New York, NY, pp 439–456Google Scholar
  145. Rodriguez-Saona C, Crafts-Brandner SJ, Paré PW, Henneberry TJ (2001) Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol 27:679–695PubMedCrossRefGoogle Scholar
  146. Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400PubMedCrossRefGoogle Scholar
  147. Rosenstiel TN, Ebbets AL, Khatri WC, Fall R, Monson RK (2004) Induction of poplar leaf nitrate reductase: a test of extrachloroplastic control of isoprene emission rate. Plant Biol 6:12–21PubMedCrossRefGoogle Scholar
  148. Rostás M, Eggert K (2008) Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defence hypothesis. Chemoecology 18:29–38CrossRefGoogle Scholar
  149. Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17811PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real-time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138:123–133PubMedCrossRefGoogle Scholar
  151. Schiestl FP (2010) Pollination: sexual mimicry abounds. Curr Biol 20:R1020–R1022PubMedCrossRefGoogle Scholar
  152. Schippers JHM, Schmidt R, Wagstaff C, Jing H-C (2015) Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169:914–930PubMedCrossRefGoogle Scholar
  153. Schnitzler J-P, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135:152–160PubMedPubMedCentralCrossRefGoogle Scholar
  154. Schuman MC, Heinzel N, Gaquerel E, Svatos A, Baldwin IT (2009) Polymorphism in jasmonate signaling partially accounts for the variety of volatiles produced by Nicotiana attenuata plants in a native population. New Phytol 183:1134–1148PubMedCrossRefGoogle Scholar
  155. Schuman MC, Barthel K, Baldwin IT (2012) Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. Elife 1:e00007PubMedPubMedCentralCrossRefGoogle Scholar
  156. Schuman MC, Palmer-Young EPC, Schmidt A, Gershenzon J, Baldwin IT (2014) Ectopic TPS expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors. Plant Physiol 166:779–797PubMedPubMedCentralCrossRefGoogle Scholar
  157. Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263PubMedPubMedCentralCrossRefGoogle Scholar
  158. Seidl-Adams I, Richter A, Boomer K, Yoshinaga N, Degenhardt J, Tumlinson JH (2014) Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. Plant Cell Environ 38:23–34PubMedCrossRefGoogle Scholar
  159. Seigler D (2008) Course notes for IB 425: plant secondary metabolism. University of Illinois Urbana-Champagne. Cited 02 Sept 2015
  160. Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18PubMedCrossRefGoogle Scholar
  161. Sherman PW (1988) The levels of analysis. Anim Behav 36:616–619CrossRefGoogle Scholar
  162. Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G (2006a) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676PubMedPubMedCentralCrossRefGoogle Scholar
  163. Shiojiri K, Ozawa R, Takabayashi J (2006b) Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PLoS Biol 4:4–7CrossRefGoogle Scholar
  164. Shiojiri K, Ozawa R, Kugimiya S, Uefune M, Van Wijk M, Sabelis MW, Takabayashi J (2010) Herbivore-specific, density-dependent induction of plant volatiles: honest or “cry wolf” signals? PLoS One 5:e12161PubMedPubMedCentralCrossRefGoogle Scholar
  165. Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000PubMedPubMedCentralCrossRefGoogle Scholar
  166. Speed MP, Fenton A, Jones MG, Ruxton GD, Brockhurst MA (2015) Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol 208:1251–1263PubMedCrossRefGoogle Scholar
  167. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55PubMedCrossRefGoogle Scholar
  168. Stout M (1996) Temporal and ontogenetic aspects of protein induction in foliage of the tomato, Lycopersicon esculentum. Biochem Syst Ecol 24:611–625CrossRefGoogle Scholar
  169. Tinbergen N (1963) On aims and methods of ethology. Zeitschrift fuer Tierpsychologie 20:410–433CrossRefGoogle Scholar
  170. Tingey DT, Manning M, Grothaus LC, Burns WF (1980) Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 65:797–801PubMedPubMedCentralCrossRefGoogle Scholar
  171. Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832PubMedPubMedCentralGoogle Scholar
  172. Ueda H, Kikuta Y, Matsuda K (2012) Plant communication Mediated by individual or blended VOCs? Plant Signal Behav 7:222–226PubMedPubMedCentralCrossRefGoogle Scholar
  173. Van Poecke R, Dicke M (2003) Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1. Plant Cell Environ 26:1541–1548CrossRefGoogle Scholar
  174. Van Poecke RMP, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928PubMedCrossRefGoogle Scholar
  175. Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castañera P, Sánchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98:8139–8144PubMedPubMedCentralCrossRefGoogle Scholar
  176. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291PubMedCrossRefGoogle Scholar
  177. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20PubMedCrossRefGoogle Scholar
  178. Von Dahl CC, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant–herbivore interactions? Plant J 46:948–960CrossRefGoogle Scholar
  179. Von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT (2007) Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J 51:293–307CrossRefGoogle Scholar
  180. Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333PubMedCrossRefGoogle Scholar
  181. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 1:1–17CrossRefGoogle Scholar
  182. Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance. Plant Physiol 146:904–915PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wang W, Barnaby JY, Tada Y, Li H, Tör M, Caldelari D, Lee D, Fu XD, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–114PubMedCrossRefGoogle Scholar
  184. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wegener R, Schulz S (2002) Identification and synthesis of homoterpenoids emitted from elm leaves after elicitation by beetle eggs. Tetrahedron 58:315–319CrossRefGoogle Scholar
  186. Widhalm JR, Jaini R, Morgan JA, Dudareva N (2015) Rethinking how volatiles are released from plant cells. Trends Plant Sci 20:545–550PubMedCrossRefGoogle Scholar
  187. Woldemariam MG, Onkokesung N, Baldwin IT, Galis I (2012) Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767PubMedCrossRefGoogle Scholar
  188. Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I (2013) NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biol 13:73PubMedPubMedCentralCrossRefGoogle Scholar
  189. Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24PubMedCrossRefGoogle Scholar
  190. Wu J, Hettenhausen C, Schuman MC, Baldwin IT (2008) A comparison of two Nicotiana attenuata accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Manduca sexta. Plant Physiol 146:927–939PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981PubMedCrossRefGoogle Scholar
  192. Yon F, Joo Y, Llorca LC, Rothe E, Baldwin IT, Kim S-G (2016) Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers. New Phytol 209:1058–1066PubMedCrossRefGoogle Scholar
  193. Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM et al (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9:e1003370PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Meredith C. Schuman
    • 1
    • 2
    Email author
  • Henrique A. Valim
    • 1
  • Youngsung Joo
    • 1
  1. 1.Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
  2. 2.German Centre for Integrative Biodiversity Research (iDiv)LeipzigGermany

Personalised recommendations