Skip to main content

Diamond Surgical Tools

  • Chapter
  • First Online:
Surgical Tools and Medical Devices

Abstract

Deposition technology has played a major part in the creation of today’s scientific devices. Computers, electronic equipment, biomedical implants, cutting tools, optical components, and automotive parts are all based on material structures created by thin film deposition processes. There are many coating processes ranging from the traditional electroplating to the more advanced laser or ion-assisted deposition. However, the choice of deposition technology depends upon many factors including substrates properties, component dimensions and geometry, production requirements, and the exact coating specification needed for the application of interest. For complex geometry components, small feature sizes, good reproducibility, and high product throughput, chemical vapor deposition (CVD) is a highly effective technology. For example, low pressure and plasma-assisted CVD is a well-established technology for semiconductor devices, which has very small feature sizes and complex geometrical arrangements on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Spear, K. E., & Dismukes, J. P. (1994). Synthetic diamond: Emerging CVD science and technology. New York: The Electrochemical Society, Wiley.

    Google Scholar 

  2. Wentorf, R. H. (1965). Journal of Physical Chemistry, 69, 3063.

    Article  Google Scholar 

  3. Butler, J. E., & Woodin, R. L. (1993). Philosophical Transactions of the Royal Society of London, A342, 209.

    Google Scholar 

  4. Ashfold, M. N. R., May, P. W., Rego, C. A., & Everitt, N. M. (1994). Chemical Society Reviews, 23, 21.

    Article  Google Scholar 

  5. Bachmann, P. K., & Messier, R. (1989). Chemical & Engineering News, 67, 24.

    Article  Google Scholar 

  6. Spear, K. E. (1989). Journal of American Ceramic Society, 72, 171.

    Article  Google Scholar 

  7. Joffreau, P. O., Haubner, R., & Lux, B. (1988). Materials Research Society Symposium Proceedings, EA-15, 15.

    Google Scholar 

  8. Spitsyn, B. V., Bouilov, L. L., & Deryagin, B. V. (1981). Journal of Crystal Growth, 52, 219.

    Article  Google Scholar 

  9. Angus, J. C. (1989). Proceedings of the Electrochemical Society, 89, 1.

    Google Scholar 

  10. Yarbrough, W. A., & Messier, R. (1996). Science, 247, 688.

    Article  Google Scholar 

  11. Messier, R., Badzian, A. R., Badzian, T., Spear, K. E., Bachmann, P. K., & Roy, R. (1987). Thin Solid Films, 153, 1.

    Article  Google Scholar 

  12. Angus, J. C., & Hayman, C. C. (1988). Science, 241, 913.

    Article  Google Scholar 

  13. Spear, K. E. (1989). Journal of the American Ceramic Society, 72, 171.

    Article  Google Scholar 

  14. Kamo, M., Sato, U., Matsumoto, S., & Setaka, N. (1983). Journal of Crystal Growth, 62, 642.

    Article  Google Scholar 

  15. Saito, Y., Matsuda, S., & Nagita, S. (1986). Journal of Materials Science Letters, 5, 565.

    Article  Google Scholar 

  16. Saito, Y., Sato, K., Tanaka, H., & Miyadera, H. (1989). Journal of Materials Science, 24, 293.

    Article  Google Scholar 

  17. Williams, B. E., Glass, J. T., Davis, R. F., Kobashi, K. & Horiuchi, T. (1988). Journal of Vacuum Science Technology A (Vacuum, Surface, Films), 6,1819.

    Google Scholar 

  18. Kobashi, K., Nishimura, K., Kawate, Y., & Horiuchi, T. (1988). Journal of Vacuum Science Technology A (Vacuum, Surface, Films), 6, 1816.

    Google Scholar 

  19. Liou, Y., Inspector, A., Weimer, R., & Messier, R. (1989). Applied Physics Letters, 55, 631.

    Article  Google Scholar 

  20. Zhu, W., Randale, C. A., Badzian, A. R. & Messier, R. (1989). Journal of Vacuum Science Technology A (Vacuum, Surface, Films), 7, 2315.

    Google Scholar 

  21. Matsumoto, S. (1985). Journal of Materials Science Letters, 4, 600.

    Article  Google Scholar 

  22. Matsumoto, S., Hino, M., & Kobayashi, T. (1987). Applied Physics Letters, 51, 737.

    Article  Google Scholar 

  23. Vitkayage, D. J., Rudder, R. A., Fountain, G. G. & Markunas, R. J. (1988). Journal of Vacuum Science & Technology A, 6, 1812.

    Google Scholar 

  24. Meyer, D. E., Ianno, N. J., Woolam, J. A., Swartzlander, A. B., & Nelson, A. J. (1988). Journal of Materials Research, 3, 1397.

    Article  Google Scholar 

  25. Wood, P., Wydeyen, T., & Tsuji, O. (1988). Programs and Abstracts of the First International Conference on New Diamond Science and Technology, New Diamond Forum, Tokyo, Japan.

    Google Scholar 

  26. Jackman, R. B., Beckman, J., & Foord, J. S. (1995). Applied Physics Letters, 66, 1018.

    Article  Google Scholar 

  27. Suzuki, K., Sawabe, A., Yasuda, H., & Inuzuka, T. (1987). Applied Physics Letters, 50, 728.

    Article  Google Scholar 

  28. Akatsuka, F., Hirose, Y., & Kamaki, K. (1988). Japanese Journal of Applied Physics, 27, L1600.

    Article  Google Scholar 

  29. Suzuki, K., Sawabe, A., & Inuzuka, T. (1990). Japanese Journal of Applied Physics, 29, 153.

    Article  Google Scholar 

  30. Niu, C. M., Tsagaropoulos, G., Baglio, J., Dwight, K., & Wold, A. (1991). Journal of Solid State Chemistry, 91, 47.

    Article  Google Scholar 

  31. Popovici, G., Chao, C. H., Prelas, M. A., Charlson, E. J., & Meese, J. M. (1995). Journal of Materials Research, 10, 2011.

    Article  Google Scholar 

  32. Chao, C. H., Popovici, G., Charlson, E. J., Charlson, E. M., Meese, J. M., & Prelas, M. A. (1994). Journal of Crystal Growth, 140, 454.

    Article  Google Scholar 

  33. Postek, M. T., Howard, K. S., Johnson, A. H., & Macmichael, K. L. (1980). Scanning electron microscopy.

    Google Scholar 

  34. Kobashi, K., Nishimura, K., Kawate, Y., & Horiuchi, T. (1988). Physical Review B, 38, 4067.

    Article  Google Scholar 

  35. Pickrell, D., Zhu, W., Badzian, A. R., Messier, R., & Newnham, R. E. (1991). Journal of Materials Research, 6, 1264.

    Article  Google Scholar 

  36. Oatley, C. W. (1972). Scanning electron microscope. Cambridge: Cambridge University Press.

    Google Scholar 

  37. Tobin, M. C. (1971). Laser Raman spectroscopy. New York: Wiley Interscience.

    Google Scholar 

  38. Colthup, N. B., Daley, L. H., & Wiberley, S. E. (1975). Introduction to infrared and raman spectroscopy. New York: Academic Press.

    Google Scholar 

  39. Raman, C. V., & Krishnan, K. S. (1928). Nature, 121, 501.

    Article  Google Scholar 

  40. Nemanich, R. J., Glass, J. T., Lucovsky, G., & Shroder, R. E. (1988). Journal of Vacuum Science & Technology A, 6, 1783.

    Article  Google Scholar 

  41. Knight, D. S., & White, W. B. (1989). Journal of Materials Research, 4, 385.

    Article  Google Scholar 

  42. Solin, S. A., & Ramdas, A. K. (1970). Physical Review B, 1, 1687.

    Article  Google Scholar 

  43. Leyendecker, T., Lemmer, O., Jurgens, A., Esser, S., & Ebberink, J. (1991). Surface & Coatings Technology, 48, 253.

    Article  Google Scholar 

  44. Murakawa, M., & Takeuchi, S. (1991). Surface & Coatings Technology, 49, 359.

    Article  Google Scholar 

  45. Yaskiki, T., Nakamura, T., Fujimori, N., & Nakai, T. (1992). Surface & Coatings Technology, 52, 81.

    Article  Google Scholar 

  46. Reineck, J., Soderbery, S., Eckholm, P., & Westergren, K. (1993). Surface & Coatings Technology, 5, 47.

    Article  Google Scholar 

  47. Wang, H. Z., Song, R. H., & Tang, S. P. (1993). Diamond and Related Materials, 2, 304.

    Article  Google Scholar 

  48. Inspector, A., Bauer, C. E., & Oles, E. J. (1994). Surface & Coatings Technology, 68(69), 359.

    Article  Google Scholar 

  49. Kanda, K., Takehana, S., Yoshida, S., Watanabe, R., Takano, S., Ando, H., et al. (1995). Surface & Coatings Technology, 73, 115.

    Article  Google Scholar 

  50. Luz, B. & Haubner, R. (1991). Diamond and Diamond-like films and coatings. In R. E. Clausing, L. L. Horton, J. C. Angus & P. Koidl (Eds.), NATO-ISI Series B, Physics (266, 579). NY: Plenum Press.

    Google Scholar 

  51. Chen, X., & Narayan, J. (1993). Journal of Applied Physics, 74, 1468.

    Google Scholar 

  52. Klass, W., Haubner, R., & Lux, B. (1997). Diamond and Related Materials, 6, 240.

    Article  Google Scholar 

  53. Zhu, W., Yang, P. C., Glass, J. T., & Arezzo, F. (1995). Journal of Materials Research, 10, 1455.

    Article  Google Scholar 

  54. Lux, B., & Haubner, R. (1996). Ceramics International, 22, 347.

    Article  Google Scholar 

  55. R. C. Weast (Ed.) (1989–1990). C.R.C. Handbook of chemistry and physics. FL: C.R.C. Press.

    Google Scholar 

  56. Haubner, R., Lindlbauer, A., & Lux, B. (1993). Diamond and Related Materials, 2(1505), 72.

    Article  Google Scholar 

  57. Chang, C. P., Flamm, D. L., Ibbotson, D. E., & Mucha, J. A. (1988). Journal of Applied Physics, 63, 1744.

    Article  Google Scholar 

  58. Gusev, M. B., Babaey, V. G., Khvostov, V. V., Lopez-Ludena, G. M., Yu Brebadze, A., Koyashin, I. Y., et al. (1997). Diamond and Related Materials, 6, 89–94.

    Article  Google Scholar 

  59. Endler, I., Barsch, K., Leonhardt, A., Scheibe, H. J., Ziegele, H., Fuchs, I., et al. (1999). Diamond and Related Materials, 8, 834–839.

    Article  Google Scholar 

  60. Kamiya, S., Takahashi, H., Polini, R., & Traversa, E. (2000). Diamond and Related Materials, 9, 191–194.

    Article  Google Scholar 

  61. Inspector, A., Oles, E. J. & Bauer, C. E. (1997). International Journal of Refractory Metals and Hard Materials, 15, 49.

    Article  Google Scholar 

  62. Itoh, H., Osaki, T., Iwahara, H., & Sakamoto, H. (1991). Journal of Materials Science, 26, 370.

    Google Scholar 

  63. Liu, H. & Dandy, D. S. (1996). Diamond chemical vapor deposition. NY: Noyes.

    Google Scholar 

  64. Nazare, M. H. & Neves, A. J. (1998). Properties, growth and application of diamond.

    Google Scholar 

  65. Zhang, G. F., & Buck, V. (2000). Surface & Coatings Technology, 132, 256.

    Article  Google Scholar 

  66. May, P., Rego, C., Thomas, R., Ashfold, M. N., & Rosser, K. N. (1994). Diamond and Related Materials, 3, 810.

    Article  Google Scholar 

  67. Gouzman, I., & Hoffmann, A. (1998). Diamond and Related Materials, 7, 209.

    Article  Google Scholar 

  68. Wang, W., Liao, K., Wang, J., Fang, L., Ding, P., Esteve, J., et al. (1999). Diamond and Related Materials, 8, 123.

    Article  Google Scholar 

  69. Wang, B. B., Wang, W., & Liao, K. (2001). Diamond and Related Materials, 10, 1622.

    Article  Google Scholar 

  70. Kim, Y. K., Han, Y. S., & Lee, J. Y. (1998). Diamond and Related Materials, 7, 96.

    Article  Google Scholar 

  71. Wang, W. L., Liao, K. J., & Gao, G. C. (2000). Surface & Coatings Technology, 126, 195.

    Article  Google Scholar 

  72. Polo, M. C., Wang, W., Sanshez, G., Andujar, J., & Esteve, J. (1997). Diamond and Related Materials, 6, 579.

    Article  Google Scholar 

  73. Sein, H., Ahmed, W., Rego, C. A., Jones, A. N., Amar, M., Jackson, M. J., et al. (2003). Journal of Physics: Condensed Matter, 15, S2961–S2967.

    Google Scholar 

  74. Amirhaghi, S., Reehal, H. S., Plappert, E., Bajic, Z., Wood, R. J. K., & Wheeler, D. W. (1999). Diamond and Related Materials, 8, 845–849.

    Article  Google Scholar 

  75. Jackson, M. J., Gill, M. D. H., Ahmed, W., & Sein, H. (2003). Proceedings of the Institute of Mechanical Engineers—(Part L). Journal of Materials, 217, 77–83.

    Google Scholar 

  76. Sein, H., Jackson, M. J., Ahmed, W., & Rego, C. A. (2000). New Diamond and Frontier Carbon Technology, 12(6), 1–10.

    Google Scholar 

  77. Sein, H., Ahmed, W., Jackson, M. J., Woodwards, R., & Polini, R. (2004). Thin Solid Films, 447–448, 455–461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sein, H. et al. (2016). Diamond Surgical Tools . In: Ahmed, W., Jackson, M. (eds) Surgical Tools and Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-33489-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33489-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33487-5

  • Online ISBN: 978-3-319-33489-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics