Skip to main content

Reactive Oxygen Species and Protein Oxidation in Neurodegenerative Disease

  • Chapter
  • First Online:
Book cover Inflammation, Aging, and Oxidative Stress

Abstract

Reactive oxygen species (ROS), once viewed chiefly as damaging byproducts of cellular function, may be better understood as being primarily integral participants of normal biological processes, but that can indeed produce damage at higher concentrations. They may oxidize specific targets in proteins, with definite regulatory consequences, and enzymes that subsequently reduce and restore their targets have been identified. However, increased levels of reactive oxygen species, oxidized proteins, and protein aggregates are hallmarks of most degenerative diseases of aging, and of aging itself. Organisms have devised sophisticated processes for sensing, correcting or recycling such aberrant molecules. In the context of aging-related neurodegenerative diseases, this review discusses the nature of ROS, their reactions with lipids and proteins, and the oxidative products of these reactions. Emphasis is given to the role of all of these as signaling molecules both under normal and degenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Rodriguez A, Martel-Monagas L, Lopez-Rodriguez A. Enhancing the communication flow between Alzheimer patients, caregivers, and neuropsychologists. Adv Exp Med Biol. 2010;680:601–7.

    Article  PubMed  Google Scholar 

  3. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  4. Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev. 2013;2013:836760.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal. 2012;17:1590–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–700.

    Article  CAS  PubMed  Google Scholar 

  7. Singleton AB, Traynor BJ. Genetics. For complex disease genetics, collaboration drives progress. Science. 2015;347(6229):1422–3.

    Article  CAS  PubMed  Google Scholar 

  8. Trojsi F, Monsurrò MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci. 2013;14:15286–311.

    Article  PubMed  PubMed Central  Google Scholar 

  9. D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med. 2013;65:509–27.

    Article  PubMed  Google Scholar 

  10. Cossenza M, Socodato R, Portugal CC, Domith ICL, Gladulich LFH, Encarnação TG, Calaza KC, Mendonça HR, Campello-Costa P, Paes-de-Carvalho R. Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. Vitam Horm. 2014;96:79–125.

    Article  CAS  PubMed  Google Scholar 

  11. Shahani N, Sawa A. Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal. 2011;14:1493–504.

    Article  CAS  PubMed  Google Scholar 

  12. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford, UK: Oxford University Press; 2007. p. 241.

    Google Scholar 

  13. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S-I, Lipton SA. Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron. 2013;78:596–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015;4:381–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boveris A, Cadenas E. Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life. 2000;50:245–50.

    Article  CAS  PubMed  Google Scholar 

  16. Nolly MB, Caldiz CI, Yeves AM, Villa-Abrille MC, Morgan PE, Amado Mondaca N, Portiansky EL, Chiappe de Cingolani GE, Cingolani HE, Ennis IL. The signaling pathway for aldosterone-induced mitochondrial production of superoxide anion in the myocardium. J Mol Cell Cardiol. 2014;67:60–8.

    Article  CAS  PubMed  Google Scholar 

  17. Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2014;33:8–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spickett CM. The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 2013;1:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Montine TJ, Peskind ER, Quinn JF, Wilson AM, Montine KS, Galasko D. Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent Alzheimer’s disease as identified by biomarkers. Neuromolecular Med. 2010;13:37–43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seet RCS, Lee C-YJ, Lim ECH, Tan JJH, Quek AML, Chong W-L, Looi W-F, Huang S-H, Wang H, Chan Y-H, Halliwell B. Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med. 2009;48:560–6.

    Article  PubMed  Google Scholar 

  21. Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow JD. Increased CSF F2-isoprostane concentration in probable AD. Neurology. 1999;52:562–5.

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Millard SP, Peskind ER, Zhang J, Yu CE, Leverenz JB, Mayer C, Shofer JS, Raskind MA, Quinn JF, Galasko DR, Montine TJ. Cross-sectional and longitudinal relationships between cerebrospinal fluid biomarkers and cognitive function in people without cognitive impairment from across the adult life span. JAMA Neurol. 2014;71:742–51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fessel JP, Hulette C, Powell S, Roberts LJ, Zhang J. Isofurans, but not F2-isoprostanes, are increased in the substantia nigra of patients with Parkinson’s disease and with dementia with Lewy body disease. J Neurochem. 2003;85:645–50.

    Article  CAS  PubMed  Google Scholar 

  24. Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging. 1998;19:33–6.

    Article  CAS  PubMed  Google Scholar 

  25. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology. 2004;62:1758–65.

    Article  CAS  PubMed  Google Scholar 

  26. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A. 1996;93:2696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci. 1997;17:2653–7.

    CAS  PubMed  Google Scholar 

  28. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol. 1998;44:819–24.

    Article  CAS  PubMed  Google Scholar 

  29. Bradley MA, Xiong-Fister S, Markesbery WR, Lovell MA. Elevated 4-hydroxyhexenal in Alzheimer’s disease (AD) progression. Neurobiol Aging. 2012;33:1034–44.

    Article  CAS  PubMed  Google Scholar 

  30. Shibata N, Yamada S, Uchida K, Hirano A, Sakoda S, Fujimura H, Sasaki S, Iwata M, Toi S, Kawaguchi M, Yamamoto T, Kobayashi M. Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis. Brain Res. 2004;1019:170–7.

    Article  CAS  PubMed  Google Scholar 

  31. Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem. 1999;72:751–6.

    Article  CAS  PubMed  Google Scholar 

  32. Shamoto-Nagai M, Maruyama W, Hashizume Y, Yoshida M, Osawa T, Riederer P, Naoi M. In parkinsonian substantia nigra, a-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm. 2007;114:1559–67.

    Article  CAS  PubMed  Google Scholar 

  33. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88:10540–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65:2146–56.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol. 1995;38:691–5.

    Article  CAS  PubMed  Google Scholar 

  36. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;70:268–75.

    Article  CAS  PubMed  Google Scholar 

  37. Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res. 2012;37:1601–14.

    Article  CAS  PubMed  Google Scholar 

  38. Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett. 1995;199:152–4.

    Article  CAS  PubMed  Google Scholar 

  39. Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol. 1998;57:338–42.

    Article  CAS  PubMed  Google Scholar 

  40. Syslová K, Böhmová A, Mikoška M, Kuzma M, Pelclová D, Kačer P. Multimarker screening of oxidative stress in aging. Oxid Med Cell Longev. 2014;2014:562860.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Green PS, Mendez AJ, Jacob JS, Crowley JR, Growdon W, Hyman BT, Heinecke JW. Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem. 2004;90(3):724–33.

    Article  CAS  PubMed  Google Scholar 

  42. Sell DR, Lane MA, Johnson WA, Masoro EJ, Mock OB, Reiser KM, Fogarty JF, Cutler RG, Ingram DK, Roth GS, Monnier VM. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci U S A. 1996;93:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A. 1994;91:5710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chou SM, Wang HS, Taniguchi A, Bucala R. Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol Med. 1998;4:324–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Castellani R, Smith MA, Richey PL, Perry G. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res. 1996;737:195–200.

    Article  CAS  PubMed  Google Scholar 

  46. Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal. 2012;17:1610–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38:73–84.

    Article  CAS  PubMed  Google Scholar 

  48. Wong C-M, Marcocci L, Das D, Wang X, Luo H, Zungu-Edmondson M, Suzuki YJ. Mechanism of protein decarbonylation. Free Radic Biol Med. 2013;65:1126–33.

    Article  CAS  PubMed  Google Scholar 

  49. Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M, Bendotti C, Bonetto V. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem. 2005;280:16295–304.

    Article  CAS  PubMed  Google Scholar 

  50. Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Møller SG. Parkinson’s disease and age: the obvious but largely unexplored link. Exp Gerontol. 2015;68:33–8.

    Article  CAS  PubMed  Google Scholar 

  51. Richarme G, Mihoub M, Dairou J, Bui LC, Leger T, Lamouri A. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J Biol Chem. 2015;290:1885–97.

    Article  PubMed  Google Scholar 

  52. Lev N, Barhum Y, Lotan I, Steiner I, Offen D. DJ-1 knockout augments disease severity and shortens survival in a mouse model of ALS. PLoS One. 2015;10, e0117190.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Madian AG, Hindupur J, Hulleman JD, Diaz-Maldonado N, Mishra VR, Guigard E, Kay CM, Rochet J-C, Regnier FE. Effect of single amino acid substitution on oxidative modifications of the Parkinson’s disease-related protein, DJ-1. Mol Cell Proteomics. 2012;11:M111.010892.

    Article  PubMed  Google Scholar 

  54. Zhou W, Zhu M, Wilson M, Petsko G, Fink AL. The oxidation state of DJ-1 regulates its chaperone activity toward α-synuclein. J Mol Biol. 2006;356:1036–48.

    Article  CAS  PubMed  Google Scholar 

  55. Liu KX, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE, Oliver PL. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain. 2015;138:1167–81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oliver PL, Finelli MJ, Edwards B, Bitoun E, Butts DL, Becker EBE, Cheeseman MT, Davies B, Davies KE. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet. 2011;7, e1002338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Finelli MJ, Liu KX, Wu Y, Oliver PL, Davies KE. Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet. 2015;24(12):3529–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto S, Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis. 2015;84:99–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hara MR, Thomas B, Cascio MB, Bae B-I, Hester LD, Dawson VL, Dawson TM, Sawa A, Snyder SH. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A. 2006;103:3887–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–83.

    Article  Google Scholar 

  61. Kitani K, Kanai S, Miyasaka K, Carrillo MC, Ivy GO. The necessity of having a proper dose of (–)deprenyl (D) to prolong the life spans of rats explains discrepancies among different studies in the past. Ann N Y Acad Sci. 2006;1067:375–82.

    Article  CAS  PubMed  Google Scholar 

  62. D’Souza Y, Elharram A, Soon-Shiong R, Andrew RD, Bennett BM. Characterization of Aldh2 (-/-) mice as an age-related model of cognitive impairment and Alzheimer’s disease. Mol Brain. 2015;8:27.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F, Danev R. Baumeister Wolfgang. Proteasomes. a molecular census of 26S proteasomes in intact neurons. Science. 2015;347:439–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sharman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharman, E.H. (2016). Reactive Oxygen Species and Protein Oxidation in Neurodegenerative Disease. In: Bondy, S., Campbell, A. (eds) Inflammation, Aging, and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-33486-8_11

Download citation

Publish with us

Policies and ethics