Collective Dynamics and Motility of Soft Elliptical Particles

Conference paper


Swarming behaviour is abundant in nature. Over many different length scales, in for example herds, flocking birds and swimming bacteria, roughly identical individuals interact locally to achieve group behaviour. The similarities between these examples suggests the existence of a general underlying principle. We propose here a local interaction model for self-propelling, elliptical particles that results in collective motion. Any particle interacts with its neighbours only, experiences noise on its orientation and pushes inwards if it is in the outer layer of the group. Initially, alignment between particles is the result of steric repulsion. We observe two types of group behaviour. The first type is a migrating group, where particles in the bulk are aligned over large length scales, but do not rearrange. The second type has very little net motion. The elliptical particles form smaller regions of aligned and antialigned particles, effectively cancelling the net motion of the group. Finally, we compare the group behaviour of elliptical particles to circular ones and investigate the importance of polar alignment. We conclude that polar alignment is a requirement for large-scale collective dynamics, like collective migration and rotation.


Migration Anisotropy Torque 


  1. 1.
    Calovi, D.S., Lopez, U., Ngo, S., Sire, C., Chaté, H., Theraulaz, G.: Swarming, schooling, milling: phase diagram of a data-driven fish school model. New J. Phys. 16(1), 015026 (2014)Google Scholar
  2. 2.
    Cavagna, A., Del Castello, L., Dey, S., Giardina, I., Melillo, S., Parisi, L., Viale, M.: Short-range interactions versus long-range correlations in bird flocks. Phys. Rev. E 92(1), 012705 (2015)Google Scholar
  3. 3.
    Collett, M., Despland, E., Simpson, S.J., Krakauer, D.C.: Spatial scales of desert locust gregarization. Proc. Natl. Acad. Sci. 95(22), 13052–13055 (1998)CrossRefGoogle Scholar
  4. 4.
    Czirók, A., Ben-Jacob, E., Cohen, I., Vicsek, T.: Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54(2), 1791 (1996)CrossRefGoogle Scholar
  5. 5.
    Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A Stat. Mech. Appl. 281(1), 17–29 (2000)CrossRefGoogle Scholar
  6. 6.
    van Drongelen, R., Pal, A., Goodrich, C.P., Idema, T.: Collective dynamics of soft active particles. Phys. Rev. E 91(3), 032706 (2015)Google Scholar
  7. 7.
    Henkes, S., Fily, Y., Marchetti, M.C.: Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84(4), 040301 (2011)Google Scholar
  8. 8.
    Landau, L., Lifshitz, E.: Fluid Mechanics, vol. 6 (1987). Course of Theoretical Physics, pp. 227–229Google Scholar
  9. 9.
    Rappel, W.J., Nicol, A., Sarkissian, A., Levine, H., Loomis, W.F.: Self-organized vortex state in two-dimensional dictyostelium dynamics. Phys. Rev. Lett. 83(6), 1247 (1999)CrossRefGoogle Scholar
  10. 10.
    Thutupalli, S., Sun, M., Bunyak, F., Palaniappan, K., Shaevitz, J.W.: Directional reversals enable myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation. J. R. Soc. Interface 12(109), 20150049 (2015)Google Scholar
  11. 11.
    Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002915 (2013)Google Scholar
  12. 12.
    Vasiev, B., Siegert, F., Weller, C.J.: A hydrodynamic model fordictyostelium discoideummound formation. J. Theor. Biol. 184(4), 441–450 (1997)CrossRefGoogle Scholar
  13. 13.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3), 71–140 (2012)CrossRefGoogle Scholar
  15. 15.
    Weijer, C.J.: Dictyostelium morphogenesis. Curr. Opin. Genet. Dev. 14(4), 392–398 (2004)CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Kaiser, A.D., Jiang, Y., Alber, M.S.: Periodic reversal of direction allows myxobacteria to swarm. Proc. Natl. Acad. Sci. 106(4), 1222–1227 (2009)CrossRefGoogle Scholar
  17. 17.
    Zeravcic, Z., Xu, N., Liu, A., Nagel, S., van Saarloos, W.: Excitations of ellipsoid packings near jamming. EPL (Europhys. Lett.) 87(2), 26001 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations