Skip to main content

Collective Dynamics and Motility of Soft Elliptical Particles

  • Conference paper
  • First Online:
Traffic and Granular Flow '15
  • 1471 Accesses

Abstract

Swarming behaviour is abundant in nature. Over many different length scales, in for example herds, flocking birds and swimming bacteria, roughly identical individuals interact locally to achieve group behaviour. The similarities between these examples suggests the existence of a general underlying principle. We propose here a local interaction model for self-propelling, elliptical particles that results in collective motion. Any particle interacts with its neighbours only, experiences noise on its orientation and pushes inwards if it is in the outer layer of the group. Initially, alignment between particles is the result of steric repulsion. We observe two types of group behaviour. The first type is a migrating group, where particles in the bulk are aligned over large length scales, but do not rearrange. The second type has very little net motion. The elliptical particles form smaller regions of aligned and antialigned particles, effectively cancelling the net motion of the group. Finally, we compare the group behaviour of elliptical particles to circular ones and investigate the importance of polar alignment. We conclude that polar alignment is a requirement for large-scale collective dynamics, like collective migration and rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calovi, D.S., Lopez, U., Ngo, S., Sire, C., Chaté, H., Theraulaz, G.: Swarming, schooling, milling: phase diagram of a data-driven fish school model. New J. Phys. 16(1), 015026 (2014)

    Google Scholar 

  2. Cavagna, A., Del Castello, L., Dey, S., Giardina, I., Melillo, S., Parisi, L., Viale, M.: Short-range interactions versus long-range correlations in bird flocks. Phys. Rev. E 92(1), 012705 (2015)

    Google Scholar 

  3. Collett, M., Despland, E., Simpson, S.J., Krakauer, D.C.: Spatial scales of desert locust gregarization. Proc. Natl. Acad. Sci. 95(22), 13052–13055 (1998)

    Article  Google Scholar 

  4. Czirók, A., Ben-Jacob, E., Cohen, I., Vicsek, T.: Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54(2), 1791 (1996)

    Article  Google Scholar 

  5. Czirók, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A Stat. Mech. Appl. 281(1), 17–29 (2000)

    Article  Google Scholar 

  6. van Drongelen, R., Pal, A., Goodrich, C.P., Idema, T.: Collective dynamics of soft active particles. Phys. Rev. E 91(3), 032706 (2015)

    Google Scholar 

  7. Henkes, S., Fily, Y., Marchetti, M.C.: Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84(4), 040301 (2011)

    Google Scholar 

  8. Landau, L., Lifshitz, E.: Fluid Mechanics, vol. 6 (1987). Course of Theoretical Physics, pp. 227–229

    Google Scholar 

  9. Rappel, W.J., Nicol, A., Sarkissian, A., Levine, H., Loomis, W.F.: Self-organized vortex state in two-dimensional dictyostelium dynamics. Phys. Rev. Lett. 83(6), 1247 (1999)

    Article  Google Scholar 

  10. Thutupalli, S., Sun, M., Bunyak, F., Palaniappan, K., Shaevitz, J.W.: Directional reversals enable myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation. J. R. Soc. Interface 12(109), 20150049 (2015)

    Google Scholar 

  11. Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002915 (2013)

    Google Scholar 

  12. Vasiev, B., Siegert, F., Weller, C.J.: A hydrodynamic model fordictyostelium discoideummound formation. J. Theor. Biol. 184(4), 441–450 (1997)

    Article  Google Scholar 

  13. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  14. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3), 71–140 (2012)

    Article  Google Scholar 

  15. Weijer, C.J.: Dictyostelium morphogenesis. Curr. Opin. Genet. Dev. 14(4), 392–398 (2004)

    Article  Google Scholar 

  16. Wu, Y., Kaiser, A.D., Jiang, Y., Alber, M.S.: Periodic reversal of direction allows myxobacteria to swarm. Proc. Natl. Acad. Sci. 106(4), 1222–1227 (2009)

    Article  Google Scholar 

  17. Zeravcic, Z., Xu, N., Liu, A., Nagel, S., van Saarloos, W.: Excitations of ellipsoid packings near jamming. EPL (Europhys. Lett.) 87(2), 26001 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben van Drongelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

van Drongelen, R., Idema, T. (2016). Collective Dynamics and Motility of Soft Elliptical Particles. In: Knoop, V., Daamen, W. (eds) Traffic and Granular Flow '15. Springer, Cham. https://doi.org/10.1007/978-3-319-33482-0_76

Download citation

Publish with us

Policies and ethics