Skip to main content

A Force-Based Model to Reproduce Stop-and-Go Waves in Pedestrian Dynamics

  • Conference paper
  • First Online:
Traffic and Granular Flow '15

Abstract

Stop-and-go waves in single-file movement are a phenomenon that is observed empirically in pedestrian dynamics. It manifests itself by the co-existence of two phases: moving and stopping pedestrians. We show analytically based on a simplified one-dimensional scenario that under some conditions the system can have unstable homogeneous solutions. Hence, oscillations in the trajectories and instabilities emerge during simulations. To our knowledge there exists no force-based model which is collision- and oscillation-free and meanwhile can reproduce phase separation. We develop a new force-based model for pedestrian dynamics able to reproduce qualitatively the phenomenon of phase separation. We investigate analytically the stability condition of the model and define regimes of parameter values where phase separation can be observed. We show by means of simulations that the predefined conditions lead in fact to the expected behaviour and validate our model with respect to empirical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4–6), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Orosz, G., Wilson, R.E., Stepan, G.: Traffic jams: dynamics and control. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 368(1957), 4455–4479 (2010)

    Google Scholar 

  3. Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer, Berlin (2013). ISBN 978-3-642-32459-8

    Book  MATH  Google Scholar 

  4. Portz, A., Seyfried, A.: Analyzing stop-and-go waves by experiment and modeling. In: Peacock, R., Kuligowski, E., Averill, J. (eds.) Pedestrian and Evacuation Dynamics 2010, pp. 577–586. Springer (2011)

    Google Scholar 

  5. Seyfried, A., Boltes, M., Kähler, J., Klingsch, W., Portz, A., Rupprecht, T., Schadschneider, A., Steffen, B., Winkens, A.: Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 145–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Eilhardt, C., Schadschneider, A.: Stochastic headway dependent velocity model for 1d pedestrian dynamics at high densities. Transp. Res. Procedia 2, 400–405 (2014)

    Article  Google Scholar 

  7. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Comput. Graph. Forum 31, 489–498 (2012)

    Article  MATH  Google Scholar 

  8. Portz, A., Seyfried, A.: Modeling stop-and-go waves in pedestrian dynamics. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part II, pp. 561–568. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  9. Seyfried, A., Portz, A., Schadschneider, A.: Phase coexistence in congested sates of pedestrian dynamics. In: Lecture Notes in Computer Science, vol. 6350, pp. 496–505 (2010)

    Google Scholar 

  10. Chraibi, M., Ezaki, T., Tordeux, A., Nishinari, K., Schadschneider, A., Seyfried, A.: Jamming transitions in force-based models for pedestrian dynamics. Phys. Rev. E 92, 042809 (2015)

    Google Scholar 

  11. Jelić, A., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line. ii. stepping behavior. Phys. Rev. E 86, 046111 (2012)

    Google Scholar 

  12. Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86, 046108 (2012)

    Google Scholar 

  13. Weidmann, U.: Transporttechnik der Fussgänger. Technical Report Schriftenreihe des IVT Nr. 90, Institut für Verkehrsplanung,Transporttechnik, Strassen- und Eisenbahnbau, ETH Zürich, ETH Zürich, 2nd edn. (1993)

    Google Scholar 

  14. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

In memory of Matthias Craesmeyer. M.C. thanks the Federal Ministry of Education and Research (BMBF) for partly supporting this work under the grant number 13N12045. A.S. thanks the Deutsche Forschungsgemeinschaft (DFG) for support under grant ‘Scha 636/9-1’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohcine Chraibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chraibi, M., Tordeux, A., Schadschneider, A. (2016). A Force-Based Model to Reproduce Stop-and-Go Waves in Pedestrian Dynamics. In: Knoop, V., Daamen, W. (eds) Traffic and Granular Flow '15. Springer, Cham. https://doi.org/10.1007/978-3-319-33482-0_22

Download citation

Publish with us

Policies and ethics