Skip to main content

Continuum Approximations

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

The continuum approximation is a mathematical idealization for modeling the collective response of discrete systems. While seemingly inapplicable to nanoscale structures, the use of continuum mechanics at the nanoscale is still a useful approximation with careful consideration of the assumptions inherent in the theory and with the inclusion of scale-dependent physical phenomena such as surface effects, micromorphic and strain-gradient effects, as well as nonlocal phenomena. Continuum mechanics may be applied to both discrete and heterogeneous media through the use of homogenization theory, which provides a mathematically elegant and rigorous framework for replacing a discrete collection of interacting entities by an equivalent homogenous continuum. The interaction energy and forces existing within a system are upscaled to an effective constitutive model and a set of partial-differential equations. The resulting boundary-value problem can then be efficiently solved using a number of numerical techniques, the most popular of which is arguably the finite-element method. Given the continuum approximation of a system, homogenization theory further provides a method for recovering the solution of the original discrete or heterogeneous system. In this chapter, we briefly review continuum mechanics, homogenization theory and computational homogenization, and constitutive modeling including crystal-plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the use of the symbols σ and τ is reversed from that of Mindlin [102] to be consistent with our use of σ for the Cauchy stress given in Sect. 3.2.1.

  2. 2.

    In this section, we use vector notation to simplify the representation of surface tensors.

  3. 3.

    This simple relation does not hold in higher-dimensional problems.

References

  1. ABAQUS, http://www.3ds.com/products-services/simulia/products/abaqus/ (2015)

  2. E. Aifantis, Update on a class of gradient theories. Mech. Mater. 35 (3–6), 259–280 (2003)

    Article  Google Scholar 

  3. E. Aifantis, On the gradient approach – relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49 (12), 1367–1377 (2011)

    Article  Google Scholar 

  4. ALBANY, https://github.com/gahansen/Albany (2015)

  5. A. Anandarajah, Computational Methods in Elasticity and Plasticity: Solids and Porous Media (Springer, New York, 2010)

    Book  Google Scholar 

  6. ANSYS, http://www.ansys.com (2015)

  7. B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51 (1), 303–313 (2012)

    Article  Google Scholar 

  8. R.J. Asaro, Geometrical effects in the inhomogeneous deformation of ductile single crystals. Acta. Metall. 27, 445 (1979)

    Article  Google Scholar 

  9. R.J. Asaro, Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23, 1–115 (1983)

    Article  Google Scholar 

  10. R.J. Asaro, A. Needleman, Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 33, 923–953 (1985)

    Article  Google Scholar 

  11. J. Auriault, G. Bonnet, Surface effects in composite materials: two simple examples. Int. J. Eng. Sci. 25 (3), 307–323 (1987)

    Article  Google Scholar 

  12. J. Barber, Elasticity (Springer, New York, 2010)

    Book  Google Scholar 

  13. J.L. Bassani, T.Y. Wu, Latent hardening in single crystals II. Analytical characterization and predictions. Proc. R. Soc. Lond. A. 435, 21–41 (1991)

    Article  Google Scholar 

  14. G. Beer, I. Smit, C. Duenser, The Boundary Element Method with Programming (Springer, Wien, 2008)

    Google Scholar 

  15. T. Belytschko, W. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, 2nd edn. (Wiley, London, 2014)

    Google Scholar 

  16. A. Bensoussan, J. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (American Mathematical Society, Providence, 2011)

    Book  Google Scholar 

  17. F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model. Simul. Mater. Sci. Eng. 15 (5), 397–417 (2007)

    Article  Google Scholar 

  18. J. Bonet, R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  19. A. Bower, Applied Mechanics of Solids (CRC, New York, 2010)

    Google Scholar 

  20. S. Brisard, L. Dormieux, FFT-based methods for the mechanics of composites: a general variational framework. Comput. Mater. Sci. 49 (3), 663–671 (2010)

    Article  Google Scholar 

  21. S. Brisard, L. Dormieux, Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput. Methods Appl. Mech. Eng. 217–220, 197–212 (2012)

    Article  Google Scholar 

  22. S.B. Brown, K.H. Kim, L. Anand, An internal variable constitutive model for hot working of metals. Int. J. Plast. 5, 95–130 (1989)

    Article  Google Scholar 

  23. H. Butt, M. Kappl, Surface and Interfacial Forces, 3rd edn. (Wiley-VCH, Weinheim, 2010)

    Book  Google Scholar 

  24. H. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  25. Y. Chen, J. Lee, Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Phys. A Stat. Mech. Appl. 322, 359–376 (2003)

    Google Scholar 

  26. Y. Chen, J. Lee, Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41 (8), 871–886 (2003)

    Article  Google Scholar 

  27. Y. Chen, J. Lee, A. Eskandarian, Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41 (1), 61–83 (2003)

    Article  Google Scholar 

  28. Y. Chen, J. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41 (8), 2085–2097 (2004)

    Article  Google Scholar 

  29. R. Christensen, Theory of Viscoelasticity: An Introduction, 2nd edn. (Academic, New York, 1982)

    Google Scholar 

  30. D. Cioranescu, P. Donato, An Introduction to Homogenization (Oxford University Press, Oxford, 1999)

    Google Scholar 

  31. A. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, New York, 2003)

    Book  Google Scholar 

  32. E. Coenen, V. Kouznetsova, M. Geers, Enabling microstructure-based damage and localization analyses and upscaling. Model. Simul. Mater. Sci. Eng. 19 (7), 074,008 (2011)

    Google Scholar 

  33. E. Coenen, V. Kouznetsova, M. Geers, Novel boundary conditions for strain localization analyses in microstructural volume elements. Int. J. Numer. Methods Eng. 90 (1), 1–21 (2012)

    Article  Google Scholar 

  34. COMSOL Multiphysics, http://www.comsol.com (2015)

  35. E. Cosserat, Theorie des Corps Deformable (Hermann, Paris, 1909)

    Google Scholar 

  36. CUBIT Geometry and Meshing Toolkit, https://cubit.sandia.gov (2012)

  37. DAMASK, http://damask.mpie.de (2015)

  38. B. Devincre, L. Kubin, Scale transitions in crystal plasticity by dislocation dynamics simulations. C. R. Phys. 11, 274–284 (2010)

    Article  Google Scholar 

  39. F. Devries, H. Dumontet, G. Duvaut, F. Lene, Homogenization and damage for composite structures. Int. J. Numer. Methods Eng. 27, 285–298 (1989)

    Article  Google Scholar 

  40. R. Dingreville, J. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1854 (2005)

    Article  Google Scholar 

  41. H. Dumontet, Study of a boundary layer problem in elastic composite materials. Math. Model. Numer. Anal. 20 (2), 265–286 (1987)

    Google Scholar 

  42. M. Duzzi, M. Zaccariotto, U. Galvanetto, Application of peridynamic theory to nanocomposite materials. Adv. Mater. Res. 1016, 44–48 (2014)

    Article  Google Scholar 

  43. P. Eisenlohr, M. Diehl, R. Lebenshohn, F. Roters, A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast. 46, 37–53 (2013)

    Article  Google Scholar 

  44. J. Ericksen, On the Cauchy-Born rule. Math. Mech. Solids 13, 199–200 (2008)

    Article  Google Scholar 

  45. A. Eringen, Microcontinuum Field Theories I: Foundations and Solids (Springer, New York, 1999)

    Book  Google Scholar 

  46. A. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    Google Scholar 

  47. A. Eringen, D. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10 (3), 233–248 (1972)

    Article  Google Scholar 

  48. A. Eringen, E. Suhubi, Nonlinear theory of simple microelastic solids – I. Int. J. Eng. Sci. 2 (2), 189–203 (1964)

    Article  Google Scholar 

  49. E. Eringen, E. Oterkus, Peridynamic Theory and its Applications (Springer, New York, 2014)

    Google Scholar 

  50. J. Fish, Practical Multiscaling (Wiley, Chichester, 2014)

    Google Scholar 

  51. N. Fleck, J. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  52. P. Franciosi, A. Zaoui, Multislip in F.C.C crystals: a theoretical approach compared with experimental data. Acta Metall. 30, 1627 (1982)

    Google Scholar 

  53. H. Fu, D.J. Benson, M.A. Meyers, Computational description of nanocrystalline deformation based on crystal plasticity. Acta Mater. 52, 4413–4425 (2004)

    Article  Google Scholar 

  54. M. Geers, V. Kouznetsova, W. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234 (7), 2175–2182 (2010)

    Article  Google Scholar 

  55. P. Germain, The method of virtual power in continuum mechanics. part 2: microstructure. SIAM J. Appl. Math. 25 (3), 556–575 (1973)

    Google Scholar 

  56. S. Gonella, M. Greene, W. Liu, Characterization of heterogeneous solids via wave methods in computational microelasticity. J. Mech. Phys. Solids 59, 959–974 (2011)

    Article  Google Scholar 

  57. M. Gurtin, A. Murdoch, Addenda to our paper a continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59 (4), 389–390 (1975)

    Article  Google Scholar 

  58. M. Gurtin, A. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57 (4), 291–323 (1975)

    Article  Google Scholar 

  59. M. Gurtin, A. Murdoch, Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  60. M. Gurtin, J. Weissmuller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78 (5), 1093–1109 (1998)

    Article  Google Scholar 

  61. L. He, Z. Li, Impact of surface stress on stress concentration. Int. J. Solids Struct. 43, 6208–6219 (2006)

    Article  Google Scholar 

  62. R. Hill, J.R. Rice, Constitutive analysis of elastic plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20, 401–413 (1972)

    Article  Google Scholar 

  63. M. Holmes, Introduction to Perturbation Methods, 2nd edn. (Springer, New York, 2013)

    Book  Google Scholar 

  64. G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley, New York, 2000)

    Google Scholar 

  65. C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38 (6), 813–841 (1990)

    Article  Google Scholar 

  66. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 348, 101–127 (1976)

    Article  Google Scholar 

  67. H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263 (1997)

    Article  Google Scholar 

  68. V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, New York, 1994)

    Book  Google Scholar 

  69. M. Jirásek, Nonlocal models for damage and fracture: comparison of approaches. Int. J. Solids Struct. 35 (31–32), 4133–4145 (1998)

    Article  Google Scholar 

  70. M. Kabel, D. Merkert, M. Schneider, Use of composite voxels in FFT-based homogenization. Comput. Methods Appl. Mech. Eng. 294, 168–188 (2015)

    Article  Google Scholar 

  71. S.R. Kalidindi, Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids 46, 267–290 (1998)

    Article  Google Scholar 

  72. S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537 (1992)

    Article  Google Scholar 

  73. U.F. Kocks, Laws for work-hardening and low-temperature creep. ASME J. Eng. Mater. Tech. 98, 76–85 (1976)

    Article  Google Scholar 

  74. U. Kocks, C. Tome, H. Wenk (eds.), Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties (Cambridge University Press, New York, 1998)

    Google Scholar 

  75. V. Kouznetsova, W. Brekelmans, F. Baaijens, An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27 (1), 37–48 (2001)

    Article  Google Scholar 

  76. V. Kouznetsova, M. Geers, W. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54 (8), 1235–1260 (2002)

    Article  Google Scholar 

  77. E. Kreysig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)

    Google Scholar 

  78. E. Kröner, Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3 (5), 731–742 (1967)

    Article  Google Scholar 

  79. L. Kubin, B. Devincre, T. Hoc, Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56, 6040–6049 (2008)

    Article  Google Scholar 

  80. LAMMPS, Molecular dynamics simulator. http://lammps.sandia.gov (2015)

  81. H. Ledbetter, Monocrystal-polycrystal elastic constants of a stainless steel. Phys. Status Solidi A 85 (1), 89–96 (1984)

    Article  Google Scholar 

  82. E.H. Lee, Elastic-plastic deformation at finite strains. Appl. Mech. 36, 1–6 (1969)

    Article  Google Scholar 

  83. J. Lemaitre, J. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  84. L. Li, P.M. Anderson, M.G. Lee, E. Bitzek, P. Derlet, H.V. Swygenhoven, The stress-strain response of nanocrystalline metals: A quantized crystal plasticity approach. Acta Mater. 57, 812–822 (2009)

    Article  Google Scholar 

  85. L. Li, M.G. Lee, P.M. Anderson, Critical strengths for slip events in nanocrystalline metals: predictions of quantized crystal plasticity simulations. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42, 3875–3882 (2011)

    Article  Google Scholar 

  86. H. Lim, C.R. Weinberger, C.C. Battaile, T.E. Buchheit, Application of generalized non-Schmid yield law to low temperature plasticity in BCC transition metals. Model. Simul. Mater. Sci. Eng. 21, 045,015 (2013)

    Article  Google Scholar 

  87. J. Lubliner, Plasticity Theory (Macmillan Publishing Company, New York, 1990)

    Google Scholar 

  88. P. Ludwik, Element der Technologischen Mechanik (Springer, New York, 1909)

    Book  Google Scholar 

  89. A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. Comp. Mat. Sci. 39, 91–95 (2007)

    Article  Google Scholar 

  90. L. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs, 1969)

    Google Scholar 

  91. K.K. Mathur, P.R. Dawson, On modeling the development of crystallographic texture in bulk forming processes. Int. J. Plast. 5, 67–94 (1989)

    Article  Google Scholar 

  92. C. McVeigh, W. Liu, Linking microstructure and properties through a predictive multiresolution continuum. Comput. Methods Appl. Mech. Eng. 197, 3268–3290 (2008)

    Article  Google Scholar 

  93. C. McVeigh, W. Liu, Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation. J. Mech. Phys. Solids 58, 187–205 (2010)

    Article  Google Scholar 

  94. MDS: Multiscale Design Systems, http://multiscale.biz (2015)

  95. C. Mei, B. Vernescu, Homogenization Methods for Multiscale Mechanics, 2nd edn. (World Scientific, New York, 2010)

    Book  Google Scholar 

  96. C. Mi, D. Kouris, Nanoparticles under the influence of surface/interface elasticity. J. Mech. Mater. Struct. 1 (4), 763–791 (2006)

    Article  Google Scholar 

  97. J. Michel, H. Moulinec, P. Suquet, Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172 (1–4), 109–143 (1999)

    Article  Google Scholar 

  98. J. Michel, H. Moulinec, P. Suquet, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials. Int. J. Numer. Methods Eng. 97, 960–985 (2014)

    Article  Google Scholar 

  99. B. Mihaila, M. Knezevic, A. Cardenas, Three orders of magnitude improved efficiency with high-performance spectral crystal plasticity on GPU platforms. Int. J. Numer. Methods Eng. (2014)

    Google Scholar 

  100. R. Miller, V. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  101. R. Mindlin, Influence of couple-stresses on stress concentrations. Exp. Mech. 3 (1), 1–7 (1963)

    Article  Google Scholar 

  102. R. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16 (1), 51–78 (1964)

    Article  Google Scholar 

  103. R. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  104. R. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  105. R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11 (1), 415–448 (1962)

    Article  Google Scholar 

  106. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21 (5), 571–574 (1973)

    Article  Google Scholar 

  107. H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157 (1–2), 69–94 (1998)

    Article  Google Scholar 

  108. P. Muller, A. Saul, Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004)

    Article  Google Scholar 

  109. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, The Hague, 1982)

    Book  Google Scholar 

  110. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, 2nd edn. (Elsevier, Amsterdam, 1999)

    Google Scholar 

  111. A. Nowick, B. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York,1972)

    Google Scholar 

  112. G. Papanicolaou, S. Varadhan, Boundary value problems with rapidly oscillating random coefficients. Colloquia Math. Soc. J’anos Bolyai 27, 835–873 (1979)

    Google Scholar 

  113. H. Park, P. Klein, A surface cauchy-born analysis of surface stress effects on metallic nanowires. Physical Review B 75, 085,408:1–9 (2007)

    Google Scholar 

  114. H. Park, P. Klein, G. Wagner, A surface cauchy-born model for nanoscale materials. Int. J. Numer. Methods Eng. 68, 1072–1095 (2006)

    Article  Google Scholar 

  115. M. Parks, R. Lehoucq, S. Plimpton, S. Silling, Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179 (11), 777–783 (2008)

    Article  Google Scholar 

  116. M. Parks, S. Plimpton, R. Lehoucq, S. Silling, Peridynamics with LAMMPS: a user guide. Technical Report, SAND 2008-1035, Sandia National Laboratories (2008). http://www.sandia.gov/~mlparks

  117. G. Pavliotis, A. Stuart, Multiscale Methods: Averaging and Homogenization (Springer, New York, 2008)

    Google Scholar 

  118. J. Peddieson, G. Buchanan, R. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41 (3–5), 305–312 (2003)

    Article  Google Scholar 

  119. R. Peerlings, N. Fleck, Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2 (4), 599–619 (2004)

    Article  Google Scholar 

  120. R. Peerlings, M. Geers, R. de Borst, W. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38 (44–45), 7723–7746 (2001)

    Article  Google Scholar 

  121. D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)

    Article  Google Scholar 

  122. D. Pekurovsky, P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 34 (4), C192–C209 (2012)

    Article  Google Scholar 

  123. C. Polizzotto, Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38 (42–43), 7359–7380 (2001)

    Article  Google Scholar 

  124. C. Polizzotto, Unified thermodynamic framework for nonlocal/gradient continuum theories. Eur. J. Mech. A. Solids 22 (5), 651–668 (2003)

    Article  Google Scholar 

  125. P. Seleson, M. Parks, M. Gunzburger, R. Lehoucq, Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8 (1), 204–227 (2009)

    Article  Google Scholar 

  126. J.R. Rice, Inelastic constitutive relations for solids, an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 443–455 (1971)

    Article  Google Scholar 

  127. F. Roters, P. Eisenlohr, T. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods in Materials Science and Engineering (Wiley-VCH, Berlin, 2010)

    Book  Google Scholar 

  128. F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  129. F. Roters, P. Eisenlohr, C. Kords, D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Proc. IUTAM 3, 3–10 (2012)

    Article  Google Scholar 

  130. A. Rusanov, Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005)

    Article  Google Scholar 

  131. A. Rusanov, Surface thermodynamics of cracks. Surf. Sci. Rep. 67, 117–140 (2012)

    Article  Google Scholar 

  132. G. Sachs, Ableitung einer fliessbedingung. Z. Ver. Dtsch. Ing. 72, 734–736 (1928)

    Google Scholar 

  133. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127 (Springer, New York, 1980)

    Google Scholar 

  134. P. Sharma, S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  Google Scholar 

  135. V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips, M. Ortiz, An adaptive finite element approach to atomic-scale mechanics–the quasicontinuum method. J. Mech. Phys. Solids 47, 611–642 (1999)

    Article  Google Scholar 

  136. S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (1), 175–201 (2000)

    Article  Google Scholar 

  137. S. Silling, R. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 74–164 (2010)

    Google Scholar 

  138. S. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88 (2), 151–184 (2007)

    Article  Google Scholar 

  139. V. Smyshlyaev, K. Cherednichenko, On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48, 1325–1357 (2000)

    Article  Google Scholar 

  140. E. Suhubi, A. Eringen, Nonlinear theory of simple microelastic solids – II. Int. J. Eng. Sci. 2 (4), 389–404 (1964)

    Article  Google Scholar 

  141. E. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (6), 1529–1563 (1996)

    Article  Google Scholar 

  142. E. Tadmor, G. Smith, N. Bernstein, E. Kaxiras, Quasicontinuum analysis of defects in solids. Phys. Rev. B 59 (1), 235–245 (1999)

    Article  Google Scholar 

  143. Tahoe Development Project, http://tahoe.sourceforge.net (2015)

  144. G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. A 165, 362–387 (1934)

    Article  Google Scholar 

  145. G.I. Taylor, Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  146. S. Timoshenko, J. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1987)

    Google Scholar 

  147. R. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11 (1), 385–414 (1962)

    Article  Google Scholar 

  148. R. Toupin, Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17 (2), 85–112 (1964)

    Article  Google Scholar 

  149. T. Tran, V. Monchiet, G. Bonnet, A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int. J. Solids Struct. 49 (5), 783–792 (2012)

    Article  Google Scholar 

  150. F. Vernerey, W. Liu, B. Moran, Multi-scale micromorphic theory for hierarchical materials. J. Mech. Phys. Solids 55, 2603–2651 (2007)

    Article  Google Scholar 

  151. Q. Wang, K. Liew, Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363 (3), 236–242 (2007)

    Article  Google Scholar 

  152. J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, T. Wang, Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24 (1), 52–82 (2011)

    Article  Google Scholar 

  153. D.H. Warner, J.F. Molinari, A semi-discrete and non-local crystal plasticity model for nanocrystalline metals. Scr. Mater. 54, 1397–1402 (2006)

    Article  Google Scholar 

  154. X. Yuan, Y. Tomita, T. Andou, A micromechanical approach of nonlocal modeling for media with periodic microstructures. Mech. Res. Commun. 35 (1–2), 126–133 (2008)

    Article  Google Scholar 

  155. ZEBULON, http://www.nwnumerics.com/Zebulon/ (2015)

  156. J. Zeman, J. Vondřejc, J. Novák, I. Marek, Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J. Comput. Phys. 229 (21), 8065–8071 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Bishop .

Editor information

Editors and Affiliations

Appendix

Appendix

Example: Error in the Continuum Approximation

Discrete systems have an inherent length scale governed fundamentally by the interaction distance between entities. The accuracy of the continuum approximation depends critically on the size of the structure compared to the size of this intrinsic length scale. To illustrate the continuum approximation of a discrete system and its accuracy, consider a simple one-dimensional chain of N atoms of total initial length L with initial atomic spacing l subjected to a body force F per atom as shown in Fig. 3.12a. The initial position X I of each atom is given by X I  = l ⋅ I, I = 0, 1, 2, 3, …, N with X N  = L. For simplicity, we take the interatomic potential to be harmonic with spring constant K, pair-wise additive, with only nearest-neighbor interactions.

Fig. 3.12
figure 12

(a ) One-dimensional chain of atoms of total initial length L with initial atomic spacing l subjected to a body force F per atom. The initial position X I of each atom is given by X I  = l ⋅ I, I = 0, 1, 2, 3, …, N with X N  = L. The interatomic forces are governed by local interactions and a spring constant K. (b ) One-dimensional chain of atoms with nonlocal interatomic forces. The nearest-neighbor spring constant is K 1, and next-nearest spring constant is K 2

The forces between the atoms are linear with respect to the relative displacements so that

$$\displaystyle{ K(u_{N} - u_{N-1}) = F }$$
(3.71a)
$$\displaystyle{ K(u_{N-1} - u_{N-2}) = 2F }$$
(3.71b)
$$\displaystyle{\vdots}$$
$$\displaystyle{ K(u_{I} - u_{I-1}) = F(N - I + 1) }$$
(3.71c)
$$\displaystyle{\vdots}$$
$$\displaystyle{ K(u_{1} - u_{0}) = FN }$$
(3.71d)

where u I is the displacement of atom I with u 0 = 0. Since this set of equations telescopes starting with \(u_{1} = FN/K\), we have

$$\displaystyle{ u_{I} = \frac{F} {K}\left [I \cdot N -\sum _{J=1}^{I}(J - 1)\right ] = \frac{F} {K}\left [I \cdot N -\frac{1} {2}I(I - 1)\right ]\,. }$$
(3.72)

Since \(N = L/l\) and \(I = X_{I}/l\), we can write Eq. (3.72) as

$$\displaystyle{ u_{I} = \frac{(F/l)L^{2}} {(Kl)} \left [\frac{X_{I}} {L} \left (1 + \frac{l} {2L}\right ) -\frac{1} {2}\left (\frac{X_{I}} {L} \right )^{2}\right ]\,. }$$
(3.73)

Note that the natural length-scale ratio for this problem is l∕L.

To obtain the continuum version of this problem, we first use Eq. (3.13) reduced to the one-dimensional form, along with a linear-elastic constitutive model, \(\sigma _{xx} = Edu/dX\). This results in the following equation for the continuum displacement field in a one-dimensional bar,

$$\displaystyle{ \frac{d} {dX}\left (k \frac{du} {dX}\right ) + f(X) = 0\,, }$$
(3.74)

where f is the body force per unit length along the bar, and k is the cross-sectional stiffness. The solution to this equilibrium equation with the boundary condition u(0) = 0 is given by

$$\displaystyle{ u(X) = \frac{fL^{2}} {k} \left [\frac{X} {L} -\frac{1} {2}\left (\frac{X} {L} \right )^{2}\right ]\,. }$$
(3.75)

Note that there is no intrinsic length scale in this continuum solution. If we identify k = K ⋅ l and F = f ⋅ l, then Eq. (3.73) converges to Eq. (3.75) in the limit as l∕L → 0. The absolute error in the continuum approximation is given by,

$$\displaystyle{ e_{I}\doteq \vert u(X_{I}) - u_{I}\vert = \frac{fL^{2}} {k} \left (\frac{X_{i}} {L} \right )\left ( \frac{l} {2L}\right ) }$$
(3.76)

This error is proportional to the length-scale ratio l∕L. Also, the error varies linearly along the chain, from e 0 = 0 at X 0 = 0 to a maximum value at X N  = 0. Thus, in the limit of infinitesimally small intrinsic length scale, the discrete solution converges to the continuum solution.

The normalized displacement solution for the discrete atom chain, given by Eq. (3.73) with \(\bar{u}\doteq u/(FL^{2}/Kl^{2})\), is shown in Fig. 3.13a as a function of normalized initial position, \(\bar{X}\doteq X/L\), for several values of the length-scale ratio l∕L. The continuum approximation for the displacement field, given by Eq. (3.75), is also shown. The error in the continuum approximation, given by Eq. (3.76) with \(\bar{e}\doteq \vert \bar{u} -\bar{ u}_{I}\vert\), is shown in Fig. 3.13b, and is seen to approach zero as l∕L → 0. Only for l∕L < 0. 02 (N = 50) is the maximum error less than 2 % of the peak displacement.

Fig. 3.13
figure 13

(a ) Normalized displacement \(\bar{u}\) as a function of normalized initial position \(\bar{X}\) of a one-dimensional chain of atoms subjected to a uniform body force and fixed at the end \(\bar{X} = 0\) for various values of the ratio of atom spacing to total initial chain length, l∕L. The continuum approximation is also shown. (b ) Normalized error in the continuum approximation. Only for l∕L < 0. 02 (N = 50) is the maximum error less than 2 % of the peak displacement

Example: Absence of a Surface Effect in Classical Continuum Mechanics

Discrete systems can also display surface effects that are not present in classical continuum theories. To illustrate the continuum approximation of a discrete system and its accuracy, consider a simple one-dimensional chain of N atoms of total initial length L with initial atomic spacing l subjected to a body force F per atom as shown in Fig. 3.12b. The initial position X I of each atom is given by X I  = l ⋅ I, I = 0, 1, 2, 3, …, N with X N  = L. We take the interatomic potential to be harmonic, pair-wise additive, with both nearest-neighbor interactions with spring constant K 1, and nonlocal interactions with spring constant K 2. Note that the atoms at the end of the chain experience a distinctly different force environment than those atoms in the interior of the chain due to the number of interacting neighbors.

The forces between the atoms are linear with respect to the relative displacements so that

$$\displaystyle{ K_{1}(u_{N} - u_{N-1}) + K_{2}(u_{N} - u_{N-2}) = F }$$
(3.77a)
$$\displaystyle{ -K_{1}(u_{N} - u_{N-1}) + K_{1}(u_{N-1} - u_{N-2}) + K_{2}(u_{N-1} - u_{N-3}) = F }$$
(3.77b)
$$\displaystyle\begin{array}{rcl} -K_{2}(u_{N} - u_{N-2}) - K_{1}(u_{N-1} - u_{N-2}) + K_{1}(u_{N-2} - u_{N-3})& & \\ + K_{2}(u_{N-2} - u_{N-4})& =& F{}\end{array}$$
(3.77c)
$$\displaystyle{\vdots}$$
$$\displaystyle{ -K_{2}(u_{I+2} - u_{I}) - K_{1}(u_{I+1} - u_{I}) + K_{1}(u_{I} - u_{I-1}) + K_{2}(u_{I} - u_{I-2}) = F }$$
(3.77d)
$$\displaystyle{\vdots}$$
$$\displaystyle{ -K_{2}(u_{3} - u_{1}) - K_{1}(u_{2} - u_{1}) + K_{1}(u_{1} - u_{0}) = F }$$
(3.77e)

where u I is the displacement of atom I with u 0 = 0. This system of equations results in a matrix equation Ku = F where K is N × N banded matrix of the Toeplitz type and can be solved using standard methods.

The normalized displacement solution for the discrete atom chain with \(\bar{u}\doteq u/(FL^{2}/K_{1}l^{2})\) is shown in Fig. 3.14a as a function of normalized initial position, \(\bar{X}\doteq X/L\), for several values of the length-scale ratio l∕L. For this example, we have chosen K 2 = 0. 5K 1. In order to use the continuum approximation given by Eq. (3.75), we must first define an effective spring stiffness, K eff. To this end, we isolate a unit cell of length 2l surrounding one interior atom. Within each cell, there are two K 1 springs acting in series thus contributing a value of \(\frac{1} {2}K_{1}\) to K eff. There is a full K 2 spring acting in parallel thus contributing a value of K 2 to K eff. There are also two K 2 springs that effectively act in parallel to the unit cell, thus contributing a value of \(\frac{1} {2}K_{2} + \frac{1} {2}K_{2}\) to K eff. Thus, \(K_{\mathrm{eff}} = \frac{1} {2}K_{1} + 2K_{2}\), and \(k\doteq K_{\mathrm{eff}} \cdot (2l)\). Also, the effective force per unit length is \(f = 2F/2l = F/l\). The continuum approximation for the displacement field is also shown in Fig. 3.14a. There is some noticeable surface effect on the atoms near the ends of the chain, particularly near \(\bar{X} = 0\). This effect is more noticeable if we plot the error in the continuum approximation, \(\bar{e}\doteq \vert \bar{u} -\bar{ u}_{I}\vert\), as shown in Fig. 3.14b. Notice that the surface effect near \(\bar{X} = 0\) affects several atoms. The surface effect is absent in the chosen continuum approximation.

Fig. 3.14
figure 14

Illustration of the surface effect for a one-dimensional discrete chain of atoms subjected to a body force F applied to each atom. The atoms are connected to their nearest neighbors by linear springs with spring constant K 1, and to their next-nearest neighbors by linear springs with spring constant K 2. The chain is fixed at X = 0. The total initial length of the chain is L, and the atomic spacing is l so that the number of atoms \(N = L/l\). (a ) Normalized displacement, \(\bar{u}\doteq u/(FL^{2}/K_{1}l^{2})\), plotted as a function of the normalized initial position, \(\bar{X}\doteq X/L\). Results are shown for \(l/L = 0.1\), 0. 05, 0. 02 (N = 10, 20, 50, respectively) with K 2 = 0. 5K 1. The continuum approximation, l∕L → 0, is also shown with \(\bar{u}\doteq u/(fL^{2}/k)\) where \(f\doteq F/l\), and \(k\doteq K_{1}\,l\). (b ) Error in the continuum approximation with \(\bar{e}\doteq \vert \bar{u} -\bar{ u}_{i}\vert\)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bishop, J.E., Lim, H. (2016). Continuum Approximations. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_3

Download citation

Publish with us

Policies and ethics