Kinetic Monte Carlo Modeling of Nanomechanics in Amorphous Systems

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 245)


The nanomechanics of amorphous systems span significant time and length scales that are difficult to access. Shear transformation zone (STZ) dynamics is a mesoscale approach that combines the kinetic Monte Carlo (kMC) algorithm with coarse-graining techniques to bridge the relevant time and length scales associated with deformation in these systems. This work discusses the fundamental details of these scale bridging techniques as well as their specific application in the STZ dynamics framework. The modeling framework is applied in various scenarios to demonstrate the versatility of the mesoscale approach. These applications include: (1) simulating the overall deformation behaviors of amorphous metals, (2) investigating the influence of thermomechanical processing by tracking a structural state variable, excess free volume, (3) assessing the nanomechanics that lead to shear banding in amorphous metals, (4) elucidating structural evolution that occurs during nanoindentation, and (5) examining the influence of various microstructural factors that influence the mechanical properties of metallic glass matrix (MGM) composites.


  1. 1.
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Rodney, A. Tanguy, D. Vandembroucq, Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mater. Sci. Eng. 19, 083001 (2011)CrossRefGoogle Scholar
  3. 3.
    A.S. Argon, Plastic deformation in metallic glasses. Acta Metall. Mater. 27, 47–58 (1979)CrossRefGoogle Scholar
  4. 4.
    E.R. Homer, D. Rodney, C.A. Schuh, Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. Phys. Rev. B. 81, 064204 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Tanguy, F. Leonforte, J.-L. Barrat, Plastic response of a 2D Lennard-Jones amorphous solid: detailed analysis of the local rearrangements at very slow strain rate. Eur. Phys. J. E. 20, 355–364 (2006)CrossRefGoogle Scholar
  6. 6.
    C.E. Maloney, A. Lemaitre, Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006)CrossRefGoogle Scholar
  7. 7.
    F. Abdeljawad, M. Haataja, Continuum modeling of bulk metallic glasses and composites. Phys. Rev. Lett. 105, 125503 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Anand, C. Su, A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater. 55, 3735–3747 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Anand, C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids 53, 1362–1396 (2005)CrossRefGoogle Scholar
  10. 10.
    C. Su, L. Anand, Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation. Acta Mater. 54, 179–189 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Yip, M.P. Short, Multiscale materials modelling at the mesoscale. Nat. Mater. 12, 774–777 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Yip (ed.), Handbook of Materials Modeling (Springer, Dordrecht, 2005)Google Scholar
  13. 13.
    A.F. Voter, Introduction to the kinetic Monte Carlo method, in Radiation Effects in Solids, ed. by K.E. Sickafus, E.A. Kotomin, B.P. Uberuaga (Springer, Dordrecht, 2007), pp. 1–23CrossRefGoogle Scholar
  14. 14.
    E.R. Homer, C.A. Schuh, Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823–2833 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Domain, C.S. Becquart, L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J. Nucl. Mater. 335, 121–145 (2004)CrossRefGoogle Scholar
  16. 16.
    C.S. Deo, D.J. Srolovitz, W. Cai, V.V. Bulatov, Kinetic Monte Carlo method for dislocation migration in the presence of solute. Phys. Rev. B 71, 014106 (2005)CrossRefGoogle Scholar
  17. 17.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Mishin, M. Asta, J. Li, Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 58, 1117–1151 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Devanathan, L. Van Brutzel, A. Chartier, C. Gueneau, A.E. Mattsson, V. Tikare, T. Bartel, T. Besmann, M. Stan, P. Van Uffelen, Modeling and simulation of nuclear fuel materials. Energy Environ. Sci. 3, 1406–1426 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Zhao, J. Li, Y. Wang, Heterogeneously randomized STZ model of metallic glasses: softening and extreme value statistics during deformation. Int J Plast 40, 1–22 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, C.A. Schuh, A coupled kinetic Monte Carlo–finite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys. Acta Mater. 83, 431–447 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, San Diego, 2002)Google Scholar
  23. 23.
    V.V. Bulatov, A.S. Argon, A stochastic model for continuum elasto-plastic behavior: I. Numerical approach and strain localization. Model. Simul. Mater. Sci. Eng. 2, 167–184 (1994)CrossRefGoogle Scholar
  24. 24.
    V.V. Bulatov, A.S. Argon, A stochastic model for continuum elasto-plastic behavior: II. A study of the glass-transition and structural relaxation. Model. Simul. Mater. Sci. Eng. 2, 185–202 (1994)CrossRefGoogle Scholar
  25. 25.
    V.V. Bulatov, A.S. Argon, A stochastic model for continuum elasto-plastic behavior: III. Plasticity in ordered versus disordered solids. Model. Simul. Mater. Sci. Eng. 2, 203–222 (1994)CrossRefGoogle Scholar
  26. 26.
    D.J. Srolovitz, V. Vitek, T. Egami, An atomistic study of deformation of amorphous metals. Acta Metall. Mater. 31, 335–352 (1983)CrossRefGoogle Scholar
  27. 27.
    C.E. Maloney, A. Lemaitre, Universal breakdown of elasticity at the onset of material failure. Phys. Rev. Lett. 93, 195501 (2004)CrossRefGoogle Scholar
  28. 28.
    D. Rodney, C.A. Schuh, Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009)CrossRefGoogle Scholar
  29. 29.
    E.R. Homer, C.A. Schuh, Three-dimensional shear transformation zone dynamics model for amorphous metals. Model. Simul. Mater. Sci. Eng. 18, 065009 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Mura, Micromechanics of Defects in Solids (Kluwer, Dordrecht, 1991)Google Scholar
  31. 31.
    T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  32. 32.
    E.B. Tadmor, R.E. Miller, Modeling Materials (Cambridge University Press, New York, 2011)CrossRefGoogle Scholar
  33. 33.
    R. Malek, N. Mousseau, Dynamics of Lennard-Jones clusters: a characterization of the activation-relaxation technique. Phys. Rev. E 62, 7723–7728 (2000)CrossRefGoogle Scholar
  34. 34.
    E. Cancès, F. Legoll, M.C. Marinica, K. Minoukadeh, F. Willaime, Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. J. Chem. Phys. 130, 114711 (2009)CrossRefGoogle Scholar
  35. 35.
    D. Rodney, C.A. Schuh, Yield stress in metallic glasses: the jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys. Rev. B 80, 184203 (2009)CrossRefGoogle Scholar
  36. 36.
    W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005)CrossRefGoogle Scholar
  37. 37.
    W.H. Wang, P. Wen, D.Q. Zhao, M.X. Pan, R.J. Wang, Relationship between glass transition temperature and Debye temperature in bulk metallic glasses. J. Mater. Res. 18, 2747–2751 (2003)CrossRefGoogle Scholar
  38. 38.
    M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Plastic deformation of metallic glasses: size of shear transformation zones from molecular dynamics simulations. Phys. Rev. B 73, 172203 (2006)CrossRefGoogle Scholar
  39. 39.
    X.L. Fu, Y. Li, C.A. Schuh, Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement. J. Mater. Res. 22, 1564–1573 (2007)CrossRefGoogle Scholar
  40. 40.
    C.E. Packard, E.R. Homer, N. Al-Aqeeli, C.A. Schuh, Cyclic hardening of metallic glasses under Hertzian contacts: experiments and STZ dynamics simulations. Philos. Mag. 90, 1373–1390 (2010)CrossRefGoogle Scholar
  41. 41.
    Y. Shi, M.L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317–4324 (2007)CrossRefGoogle Scholar
  42. 42.
    M.L. Falk, Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Phys. Rev. B 60, 7062–7070 (1999)CrossRefGoogle Scholar
  43. 43.
    F. Spaepen, Homogeneous flow of metallic glasses: a free volume perspective. Scr. Mater. 54, 363–367 (2006)CrossRefGoogle Scholar
  44. 44.
    T. Egami, Formation and deformation of metallic glasses: atomistic theory. Intermetallics 14, 882–887 (2006)CrossRefGoogle Scholar
  45. 45.
    L. Li, N. Wang, F. Yan, Transient response in metallic glass deformation: a study based on shear transformation zone dynamics simulations. Scr. Mater. 80, 25–28 (2014)CrossRefGoogle Scholar
  46. 46.
    C.E. Packard, C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55, 5348–5358 (2007)CrossRefGoogle Scholar
  47. 47.
    A.C. Lund, C.A. Schuh, Critical length scales for the deformation of amorphous metals containing nanocrystals. Philos. Mag. Lett. 87, 603–611 (2007)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155–11160 (2007)CrossRefGoogle Scholar
  49. 49.
    X.L. Fu, Y. Li, C.A. Schuh, Mechanical properties of metallic glass matrix composites: effects of reinforcement character and connectivity. Scr. Mater. 56, 617–620 (2007)CrossRefGoogle Scholar
  50. 50.
    T.G. Nieh, J. Wadsworth, Bypassing shear band nucleation and ductilization of an amorphous-crystalline nanolaminate in tension. Intermetallics 16, 1156–1159 (2008)CrossRefGoogle Scholar
  51. 51.
    D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Scudino, B. Jerliu, S. Pauly, K.B. Surreddi, U. Kühn, J. Eckert, Ductile bulk metallic glasses produced through designed heterogeneities. Scr. Mater. 65, 815–818 (2011)CrossRefGoogle Scholar
  53. 53.
    Y.S. Oh, C.P. Kim, S. Lee, N.J. Kim, Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Mater. 59, 7277–7286 (2011)CrossRefGoogle Scholar
  54. 54.
    R.T. Qu, J.X. Zhao, M. Stoica, J. Eckert, Z.F. Zhang, Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects. Mater. Sci. Eng. A 534, 365–373 (2012)CrossRefGoogle Scholar
  55. 55.
    L. Li, E.R. Homer, C.A. Schuh, Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Mater. 61, 3347–3359 (2013)CrossRefGoogle Scholar
  56. 56.
    E.R. Homer, Examining the initial stages of shear localization in amorphous metals. Acta Mater. 63, 44–53 (2014)CrossRefGoogle Scholar
  57. 57.
    C.E. Packard, O. Franke, E.R. Homer, C.A. Schuh, Nanoscale strength distribution in amorphous versus crystalline metals. J. Mater. Res. 25, 2251–2263 (2010)CrossRefGoogle Scholar
  58. 58.
    T.J. Hardin, E.R. Homer, Microstructural factors of strain delocalization in model metallic glass matrix composites. Acta Mater. 83, 203–215 (2015)CrossRefGoogle Scholar
  59. 59.
    C.E. Packard, L.M. Witmer, C.A. Schuh, Hardening of a metallic glass during cyclic loading in the elastic range, Appl Phys Letters. 92, (2008) 171911. doi:10.1063/1.2919722. Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBrigham Young UniversityProvoUSA
  2. 2.Department of Metallurgical and Materials EngineeringUniversity of AlabamaTuscaloosaUSA
  3. 3.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations