Skip to main content

Introduction to Atomistic Simulation Methods

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

In this chapter we give a synopsis of classical simulation methods for atomic and molecular systems. We discuss the fundamental principles and empirical potentials underlying molecular statics and dynamics. We also introduce the connection to statistical mechanics and the estimation of macroscale material properties. In addition to theoretical aspects of atomistic simulation methods, we provide an overview of practical aspects, and the tools and simulation packages that are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Leach, Molecular Modelling: Principles and Applications, 2nd edn. (Prentice Hall, New York, 2001)

    Google Scholar 

  2. J. Nocedal, S. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006)

    Google Scholar 

  3. M. Parrinello, A. Rahman, Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45 (14), 1196–1199 (1980)

    Article  Google Scholar 

  4. S. Pattamatta, R.S. Elliott, E.B. Tadmor, Mapping the stochastic response of nanostructures. Proc. Natl. Acad. Sci. 111 (17), E1678–E1686 (2014)

    Article  Google Scholar 

  5. R. Fletcher, Function minimization by conjugate gradients. Comput. J. 7 (2), 149–154 (1964)

    Article  Google Scholar 

  6. E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées. Modélisation Mathématique et Analyse Numérique (ESAIM: Mathematical Modelling and Numerical Analysis) 3 (R1), 35–43 (1969)

    Google Scholar 

  7. H. Jónsson, G. Mills, K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, vol. 1 (World Scientific, Singapore, 1998), pp. 385–404

    Book  Google Scholar 

  8. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made simple. Phys. Rev. Lett. 97 (17), 170201 (2006)

    Google Scholar 

  9. G. Mills, H. Jónsson, Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett. 72 (7), 1124–1127 (1994)

    Article  Google Scholar 

  10. G. Mills, H. Jónsson, G.K. Schenter, Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324 (2–3), 305–337 (1995)

    Article  Google Scholar 

  11. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113 (22), 9901 (2000)

    Google Scholar 

  12. V.M. Born, Th. von Karman, Uber schwingungen in raumgittern. Phys. Z. 13 (8), 297 (1912)

    Google Scholar 

  13. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31 (Springer Science and Business Media, New York, 2006)

    Google Scholar 

  14. R.D. Ruth, A canonical integration technique. IEEE Trans. Nucl. Sci. 30 (CERN-LEP-TH-83-14), 2669–2671 (1983)

    Google Scholar 

  15. E. Forest, R.D. Ruth, Fourth order symplectic integration. Physica 43 (LBL-27662), 105–117 (1989)

    Google Scholar 

  16. J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23 (3), 327–341 (1977)

    Article  Google Scholar 

  17. B.J. Leimkuhler, R.D. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112 (1), 117–125 (1994)

    Article  Google Scholar 

  18. M. Tuckerman, B.J Berne, G.J. Martyna, Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97 (3), 1990–2001 (1992)

    Google Scholar 

  19. K. Huang, Introduction to Statistical Mechanics (World Scientific, Singapore, 2001)

    Google Scholar 

  20. S. Nose, Constant-temperature molecular dynamics. J. Phys.: Condens. Matter 2 (S), SA115 (1990)

    Google Scholar 

  21. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  22. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, vol. 1 (Academic, San Diego, 2001)

    Google Scholar 

  23. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52 (12), 7182–7190 (1981)

    Article  Google Scholar 

  24. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Corporation, North Chelmsford, 2013)

    Google Scholar 

  25. J.H. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (6), 817–829 (1950)

    Google Scholar 

  26. D.J. Evans, G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  27. F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106 (14), 6082–6085 (1997)

    Article  Google Scholar 

  28. D.J. Evans, Homogeneous NEMD algorithm for thermal conductivity—application of non-canonical linear response theory. Phys. Lett. A 91 (9), 457–460 (1982)

    Article  Google Scholar 

  29. L.T. Kong, Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182 (10), 2201–2207 (2011)

    Article  Google Scholar 

  30. P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65 (14), 144306 (2002)

    Google Scholar 

  31. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989)

    Google Scholar 

  32. J.E. Lennard-Jones, On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 106, 463–477 (1924)

    Article  Google Scholar 

  33. A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102 (18), 3586–3616 (1998)

    Article  Google Scholar 

  34. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25 (9), 1157–1174 (2004)

    Article  Google Scholar 

  35. N. Karasawa, W.A. Goddard III, Acceleration of convergence for lattice sums. J. Phys. Chem. 93 (21), 7320–7327 (1989)

    Article  Google Scholar 

  36. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, 2010)

    Google Scholar 

  37. J.J. Gilman, Electronic Basis of the Strength of Materials (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  38. M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46 (5), 2727 (1992)

    Google Scholar 

  39. B.-J. Lee, M.I. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62 (13), 8564 (2000)

    Google Scholar 

  40. B.-J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64 (18), 184102 (2001)

    Google Scholar 

  41. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulations. Acta Mater. 53 (15), 4029–4041 (2005)

    Article  Google Scholar 

  42. Y. Mishin, A.Y. Lozovoi, Angular-dependent interatomic potential for tantalum. Acta Mater. 54 (19), 5013–5026 (2006)

    Article  Google Scholar 

  43. S. Ryu, W. Cai, A gold–silicon potential fitted to the binary phase diagram. J. Phys.: Condens. Matter 22 (5), 055401 (2010)

    Google Scholar 

  44. B.-J. Lee, A modified embedded-atom method interatomic potential for the Fe-C system. Acta Mater. 54 (3), 701–711 (2006)

    Article  Google Scholar 

  45. L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, M.F. Horstemeyer, Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method. Phys. Rev. B 89 (9), 094102 (2014)

    Google Scholar 

  46. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31 (8), 5262 (1985)

    Google Scholar 

  47. R.L.C. Vink, G.T. Barkema, W.F. Van der Weg, N. Mousseau, Fitting the Stillinger–Weber potential to amorphous silicon. J. Non-Cryst. Solids 282 (2), 248–255 (2001)

    Article  Google Scholar 

  48. Z. Jian, Z. Kaiming, X. Xide, Modification of Stillinger-Weber potentials for Si and Ge. Phys. Rev. B 41 (18), 12915 (1990)

    Google Scholar 

  49. K. Ding, H.C. Andersen, Molecular-dynamics simulation of amorphous germanium. Phys. Rev. B 34 (10), 6987 (1986)

    Google Scholar 

  50. A. Béré, A. Serra, On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries. Philos. Mag. 86 (15), 2159–2192 (2006)

    Article  Google Scholar 

  51. N. Aıchoune, V. Potin, P. Ruterana, A. Hairie, G. Nouet, E. Paumier, An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN. Comput. Mater. Sci. 17 (2), 380–383 (2000)

    Article  Google Scholar 

  52. H.P. Lei, J. Chen, S. Petit, P. Ruterana, X.Y. Jiang, G. Nouet, Stillinger–Weber parameters for In and N atoms. Superlattice. Microst. 40 (4), 464–469 (2006)

    Article  Google Scholar 

  53. M. Ichimura, Stillinger-Weber potentials for III–V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs. Phys. Status Solidi (a) 153 (2), 431–437 (1996)

    Google Scholar 

  54. J.E. Angelo, M.J. Mills, Investigations of the misfit dislocation structure at a CdTe(001)/GaAs(001) interface using Stillinger-Weber potentials and high-resolution transmission electron microscopy. Philos. Mag. A 72 (3), 635–649 (1995)

    Article  Google Scholar 

  55. X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, D. Zubia, Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te. Phys. Rev. B 88 (8), 085309 (2013)

    Google Scholar 

  56. J.-W. Jiang, H.S. Park, T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (mos2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114 (6), 064307 (2013)

    Google Scholar 

  57. K. Albe, K. Nordlund, J. Nord, A. Kuronen, Modeling of compound semiconductors: analytical bond-order potential for Ga, As, and GaAs. Phys. Rev. B 66 (3), 035205 (2002)

    Google Scholar 

  58. J. Nord, K. Albe, P. Erhart, K. Nordlund, Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys.: Condens. Matter 15 (32), 5649 (2003)

    Google Scholar 

  59. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37 (12), 6991 (1988)

    Google Scholar 

  60. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61 (25), 2879 (1988)

    Google Scholar 

  61. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39 (8), 5566 (1989)

    Google Scholar 

  62. G.C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31 (10), 6184 (1985)

    Google Scholar 

  63. LAMMPS: http://lammps.sandia.gov/ (2016). Retrieved in 2016

  64. J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56 (6), 632 (1986)

    Google Scholar 

  65. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42 (15), 9458 (1990)

    Google Scholar 

  66. T. Kumagai, S. Izumi, S. Hara, S. Sakai, Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput. Mater. Sci. 39 (2), 457–464 (2007)

    Article  Google Scholar 

  67. D. Powell, M.A. Migliorato, A.G. Cullis, Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors. Phys. Rev. B 75 (11), 115202 (2007)

    Google Scholar 

  68. J. Tersoff, Carbon defects and defect reactions in silicon. Phys. Rev. Lett. 64 (15), 1757 (1990)

    Google Scholar 

  69. J. Tersoff, Chemical order in amorphous silicon carbide. Phys. Rev. B 49 (23), 16349 (1994)

    Google Scholar 

  70. P. Erhart, K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 71 (3), 035211 (2005)

    Google Scholar 

  71. F. de Brito Mota, J.F. Justo, A. Fazzio, Structural properties of amorphous silicon nitride. Phys. Rev. B 58 (13), 8323 (1998)

    Google Scholar 

  72. S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Interatomic potential for Si–O systems using Tersoff parameterization. Comput. Mater. Sci. 39 (2), 334–339 (2007)

    Article  Google Scholar 

  73. M. Mrovec, R. Gröger, A.G. Bailey, D. Nguyen-Manh, C. Elsässer, V. Vitek, Bond-order potential for simulations of extended defects in tungsten. Phys. Rev. B 75 (10), 104119 (2007)

    Google Scholar 

  74. N. Juslin, P. Erhart, P. Träskelin, J. Nord, K.O.E. Henriksson, K. Nordlund, E. Salonen, K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J. Appl. Phys. 98 (12), 123520 (2005)

    Google Scholar 

  75. M. Müller, P. Erhart, K. Albe, Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials. J. Phys.: Condens. Matter 19 (32), 326220 (2007)

    Google Scholar 

  76. K.O.E. Henriksson, K. Nordlund, Simulations of cementite: an analytical potential for the Fe-C system. Phys. Rev. B 79 (14), 144107 (2009)

    Google Scholar 

  77. P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide. J. Phys.: Condens. Matter 18 (29), 6585 (2006)

    Google Scholar 

  78. M. Backman, N. Juslin, K. Nordlund, Bond order potential for gold. Eur. Phys. J. B 85 (9), 1–5 (2012)

    Article  Google Scholar 

  79. D.G. Pettifor, I.I. Oleinik, Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory. Phys. Rev. B 59 (13), 8487 (1999)

    Google Scholar 

  80. D.G. Pettifor, I.I. Oleinik, Bounded analytic bond-order potentials for σ and π bonds. Phys. Rev. Lett. 84 (18), 4124 (2000)

    Google Scholar 

  81. D.G. Pettifor, I.I. Oleinik, Analytic bond-order potential for open and close-packed phases. Phys. Rev. B 65 (17), 172103 (2002)

    Google Scholar 

  82. M.W. Finnis, Bond-order potentials through the ages. Prog. Mater. Sci. 52 (2), 133–153 (2007)

    Article  Google Scholar 

  83. M. Aoki, D. Nguyen-Manh, D.G. Pettifor, V. Vitek, Atom-based bond-order potentials for modelling mechanical properties of metals. Prog. Mater. Sci. 52 (2), 154–195 (2007)

    Article  Google Scholar 

  84. D.G. Pettifor, I.I. Oleynik, Interatomic bond-order potentials and structural prediction. Prog. Mater. Sci. 49 (3), 285–312 (2004)

    Article  Google Scholar 

  85. I.I. Oleinik, D.G. Pettifor, Analytic bond-order potentials beyond Tersoff-Brenner. II. Application to the hydrocarbons. Phys. Rev. B 59 (13), 8500 (1999)

    Google Scholar 

  86. D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, D.G. Pettifor, Analytic bond-order potential for the gallium arsenide system. Phys. Rev. B 73 (4), 045206 (2006)

    Google Scholar 

  87. R. Drautz, X.W. Zhou, D.A. Murdick, B. Gillespie, H.N.G. Wadley, D.G. Pettifor, Analytic bond-order potentials for modelling the growth of semiconductor thin films. Prog. Mater. Sci. 52 (2), 196–229 (2007)

    Article  Google Scholar 

  88. D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, J.A. Zimmerman, Analytical bond-order potential for the Cd-Zn-Te ternary system. Phys. Rev. B 86 (24), 245203 (2012)

    Google Scholar 

  89. M. Mrovec, D. Nguyen-Manh, D.G. Pettifor, V. Vitek, Bond-order potential for molybdenum: application to dislocation behavior. Phys. Rev. B 69 (9), 094115 (2004)

    Google Scholar 

  90. R. Gröger, A.G. Bailey, V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2¡111¿ screw dislocations at 0k. Acta Mater. 56 (19), 5401–5411 (2008)

    Google Scholar 

  91. M. Mrovec, D. Nguyen-Manh, C. Elsässer, P. Gumbsch, Magnetic bond-order potential for iron. Phys. Rev. Lett. 106 (24), 246402 (2011)

    Google Scholar 

  92. A.C.T. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105 (41), 9396–9409 (2001)

    Article  Google Scholar 

  93. A.C.T. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard, Reaxffsio reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107 (19), 3803–3811 (2003)

    Article  Google Scholar 

  94. D. Fantauzzi, J. Bandlow, L. Sabo, J.E Mueller, A.C.T. van Duin, T. Jacob, Development of a reaxff potential for Pt–O systems describing the energetics and dynamics of Pt-oxide formation. Phys. Chem. Chem. Phys. 16 (42), 23118–23133 (2014)

    Google Scholar 

  95. Q. Zhang, T. Çaǧın, A. van Duin, W.A. Goddard III, Y. Qi, L.G. Hector Jr., Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Phys. Rev. B 69 (4), 045423 (2004)

    Google Scholar 

  96. T. T Järvi, A.C.T. van Duin, K. Nordlund, W.A. Goddard III, Development of interatomic reaxff potentials for Au–S–C–H systems. J. Phys. Chem. A 115 (37), 10315–10322 (2011)

    Google Scholar 

  97. A.C.T. van Duin, B.V. Merinov, S.S. Jang, W.A. Goddard, Reaxff reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. J. Phys. Chem. A 112 (14), 3133–3140 (2008)

    Article  Google Scholar 

  98. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 1–19 (1995)

    Article  Google Scholar 

  99. W. Humphrey, A. Dalke, K. Schulten, VMD - visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  100. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Chem. 4 (1), 17 (2012)

    Google Scholar 

  101. D. van der Spoel, E. Lindahl, B. Hess, A.R. Van Buuren, E. Apol, P.J. Meulenhoff, D.P. Tieleman, A.L.T.M. Sijbers, K.A. Feenstra, R. van Drunen, et al., Gromacs User Manual Version 3.3. (2008). http://www.gromacs.org/Documentation/Manual

  102. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, et al., Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013). doi:10.1093/bioinformatics/btt055

    Google Scholar 

  103. C.A. Becker, F. Tavazza, Z.T. Trautt, R.A. Buarque de Macedo, Considerations for choosing and using force fields and interatomic potentials in materials science and engineering. Curr. Opin. Solid State Mater. Sci. 17 (6), 277–283 (2013)

    Article  Google Scholar 

  104. C.A. Becker, Atomistic simulations for engineering: potentials and challenges, in Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010) (2014), p. 91

    Google Scholar 

  105. E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker, Knowledgebase of interatomic models (kim) (2011). http://www.gromacs.org/Documentation/Manual

  106. E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker, The potential of atomistic simulations and the knowledgebase of interatomic models. JOM J. Miner. Met. Mater. Soc. 63 (7), 17–17 (2011)

    Article  Google Scholar 

  107. J. Roth, Imd: a typical massively parallel molecular dynamics code for classical simulations–structure, applications, latest developments, in Sustained Simulation Performance 2013 (Springer, New York, 2013), pp. 63–76

    Google Scholar 

  108. J. Stadler, R. Mikulla, H.-R. Trebin, Imd: a software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8 (05), 1131–1140 (1997)

    Article  Google Scholar 

  109. IMD: http://imd.itap.physik.uni-stuttgart.de/ (2016). Retrieved in 2016

  110. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26 (16), 1781–1802 (2005)

    Article  Google Scholar 

  111. J. Ahrens, B. Geveci, C. Law, in ParaView: An End-User Tool for Large Data Visualization, Visualization Handbook (Elsevier, San Diego, 2005)

    Google Scholar 

  112. U. Ayachit, The ParaView Guide: A Parallel Visualization Application (Kitware, Clifton Park, 2015)

    Google Scholar 

  113. J. Li, Atomeye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11, 173–177 (2003)

    Article  Google Scholar 

  114. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO - the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  115. H.S. Park, W. Cai, H.D. Espinosa, H. Huang, Mechanics of crystalline nanowires. MRS Bull. 34 (03), 178–183 (2009)

    Article  Google Scholar 

  116. C.R. Weinberger, W. Cai, Plasticity of metal nanowires. J. Mater. Chem. 22 (8), 3277–3292 (2012)

    Article  Google Scholar 

  117. D. Farkas, A. Caro, E. Bringa, D. Crowson, Mechanical response of nanoporous gold. Acta Mater. 61 (9), 3249–3256 (2013)

    Article  Google Scholar 

  118. J.A. Greathouse, M.D. Allendorf, The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128 (33), 10678–10679 (2006)

    Article  Google Scholar 

  119. M.J. Buehler, Atomistic Modeling of Materials Failure (Springer Science and Business Media, New York, 2008)

    Book  Google Scholar 

  120. V. Bulatov, W. Cai, Computer Simulations of Dislocations, vol. 3 (Oxford University Press, Oxford, 2006)

    Google Scholar 

Download references

Acknowledgements

Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reese E. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Jones, R.E., Weinberger, C.R., Coleman, S.P., Tucker, G.J. (2016). Introduction to Atomistic Simulation Methods. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_1

Download citation

Publish with us

Policies and ethics