Skip to main content

Improved Approximations for Cubic Bipartite and Cubic TSP

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

Abstract

We show improved approximation guarantees for the traveling salesman problem on cubic bipartite graphs and cubic graphs. For cubic bipartite graphs with n nodes, we improve on recent results of Karp and Ravi [10] by giving a “local improvement” algorithm that finds a tour of length at most \(5/4n-2\). For 2-connected cubic graphs, we show that the techniques of Mömke and Svensson [11] can be combined with the techniques of Correa et al. [6], to obtain a tour of length at most \((4/3-1/8754)n\).

A. van Zuylen—This work was supported by a grant from the Simons Foundation (#359525, Anke Van Zuylen) and by NSF Prime Award: HRD-1107147, Women in Scientific Education (WISE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs (2011). http://arxiv.org/abs/1101.5586

  2. Barnette, D.W.: Conjecture 5. In: Recent Progress in Combinatorics (1969)

    Google Scholar 

  3. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Program. 144(1–2), 227–245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candráková, B., Lukotka, R.: Cubic TSP - a 1.3-approximation. CoRR abs/1506.06369 (2015)

    Google Scholar 

  5. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976)

    Google Scholar 

  6. Correa, J.R., Larré, O., Soto, J.A.: TSP tours in cubic graphs: beyond 4/3. SIAM J. Discrete Math. 29(2), 915–939 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)

    MathSciNet  Google Scholar 

  8. Gamarnik, D., Lewenstein, M., Sviridenko, M.: An improved upper bound for the TSP in cubic 3-edge-connected graphs. Oper. Res. Lett. 33(5), 467–474 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karp, J., Ravi, R.: A 9/7-approximation algorithm for graphic TSP in cubic bipartite graphs. In: Approximation, Randomization, and Combinatorial Optimization (APPROX-RANDOM). LIPIcs, vol. 28, pp. 284–296. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

    Google Scholar 

  11. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceedings of the 52th Annual Symposium on Foundations of Computer Science, pp. 560–569 (2011)

    Google Scholar 

  12. Mucha, M.: 13/9-approximation for graphic TSP. Theory Comput. Syst. 55(4), 640–657 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34(5), 597–629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. van Zuylen, A.: Improved approximations for cubic and cubic bipartite TSP. CoRR abs/1507.07121 (2015)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Marcin Mucha for careful reading and pointing out an omission in a previous version, Frans Schalekamp for helpful discussions, and an anonymous reviewer for suggesting the simplified proof for the result in Sect. 3 for cubic non-bipartite graphs. Other anonymous reviewers are acknowledged for helpful feedback on the presentation of the algorithm for bipartite cubic graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke van Zuylen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

van Zuylen, A. (2016). Improved Approximations for Cubic Bipartite and Cubic TSP. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics