Skip to main content

Acute Kidney Injury: Definitions, Incidence, Diagnosis, and Outcome

  • Chapter
  • First Online:
  • 992 Accesses

Abstract

Surgeons, anesthesiologists, intensivists, radiologists, interventional cardiologists, and nephrologists, among others, are keenly interested in preserving renal function in patients undergoing surgical interventions or other procedures, as well as in intensive care unit (ICU) patients. The well-known strong association between acute kidney injury (AKI) and its sequel, chronic kidney disease (CKD) with mortality and with severe cardiac and other organ morbidity [1–5], makes practitioners even more mindful of kidney function in these patients. No effective new therapy for AKI has been introduced so far; thus better avenues for progress may be novel diagnostic tests and a clearer understanding of the factors associated with the development of AKI in both surgical and critically ill patients and how to prevent it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chawla LS, Amdur RL, Shaw AD et al (2014) The association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol 9:448–456

    Article  PubMed  Google Scholar 

  2. Go AS, Chertow GM, Fan D et al (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Eng J Med 351:1296–1305

    Article  CAS  Google Scholar 

  3. Lafrance JP, Miller DR (2010) Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 21:345–352

    Article  PubMed  PubMed Central  Google Scholar 

  4. James MT, Ghali WA, Knudtson ML et al (2011) Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation 123:409–416

    Article  PubMed  Google Scholar 

  5. Tsagalis G, Akrivos T, Alevizaki M et al (2009) Renal dysfunction in acute stroke: an independent predictor of long-term all combined vascular events and overall mortality. Nephrol Dial Transplant 24:194–200

    Article  PubMed  Google Scholar 

  6. Farley SJ (2007) Acute kidney injury/acute renal failure: standardizing nomenclature, definitions and staging. Nat Clin Pract Nephrol 3:405

    Article  PubMed  Google Scholar 

  7. Niessenson AR (1998) Acute renal failure: definition and pathogenesis. Kidney Int Suppl 66:S7–S10

    Google Scholar 

  8. Bellomo R, Ronco C, Kellum JA et al (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138

    Article  Google Scholar 

  10. Ronco C, Kellum JA, Mehta R (2001) Acute dialysis quality initiative (ADQI). Nephrol Dial Transplant 16(8):1555–1558

    Article  CAS  PubMed  Google Scholar 

  11. Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes of acute kidney injury: report of an initiative. Nat Clin Pract Nephrol 3:439–442

    Article  PubMed  Google Scholar 

  12. Palevsky PM, Liu KD, Brophy PD et al (2013) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis 6:649–672

    Article  Google Scholar 

  13. Fliser D, Laville M, Covic A et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast induced nephropathy. Nephrol Dial Transplant 27:4263–4272

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weingarten TN, Gurrieri C, Jarett PD et al (2012) Acute kidney injury following total joint arthroplasty: retrospective analysis. Can J Anaesth 59(12):1111–1118

    Article  PubMed  Google Scholar 

  15. Walsh M, Devereaux PJ, Garg AX et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery. Anesthesiology 119:1–9

    Article  Google Scholar 

  16. Kheterpal S, Tremper KK, Englesbe MJ et al (2007) Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology 107:892–902

    Article  PubMed  Google Scholar 

  17. Abhela FJ, Botelho M, Fernandes V et al (2009) Determinants of postoperative acute kidney injury. Crit Care 13:R79

    Article  Google Scholar 

  18. Lehman LW, Saeed M, Moody G, Mark R (2010) Hypotension as a risk factor for acute kidney injury in ICU patients. Comput Cardiol 37:1095–1098

    Google Scholar 

  19. Tujjar O, Mineo G, Dell’Anna A et al (2015) Acute kidney injury after cardiac arrest. Crit Care 19:169

    Article  PubMed  PubMed Central  Google Scholar 

  20. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  CAS  PubMed  Google Scholar 

  21. Honore PM, Jacobs R, Hendrickx I et al (2015) Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann Intensive Care 5:51

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harris DG, Koo G, McCrone MP et al (2015) Acute kidney injury in critically ill vascular surgery patients is common and associated with increased mortality. Front Surg 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chawla LS, Eggers PW, Star RA et al (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Eng J Med 371:58–66

    Article  Google Scholar 

  24. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Workgroup (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Article  Google Scholar 

  25. Endre ZH, Pickering JW, Walker RJ (2001) Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol 301:F697–F707

    Article  Google Scholar 

  26. Shemesh O, Golbetz H, Kriss JP et al (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  CAS  PubMed  Google Scholar 

  27. Stevens LA, Coresh J, Schmid CH et al (2008) Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3418 individuals with CKD. Am J Kidney Dis 51:395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai X, Zeng Z, Fu C et al (2015) Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Crit Care 19:223

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tziakas D, Chalikias G, Kareli D et al (2015) Spot urine albumin to creatinine ratio outperforms novel acute kidney injury biomarkers in patients with acute myocardial infarction. Int J Cardiol 197:48–55

    Article  PubMed  Google Scholar 

  30. Vaidya VS, Ramirez V, Ichimura T et al (2006) Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290:F517–F529

    Article  CAS  PubMed  Google Scholar 

  31. Doi K, Yuen PS, Eisner C et al (2009) Reduced production of creatinine limits its use as a marker of kidney injury in sepsis. J Am Soc Nephrol 20:1217–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arthur JM, Hill EG, Alge JL et al (2014) Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int 85:431–438

    Article  CAS  PubMed  Google Scholar 

  33. Bamber D (1975) The area above the ordinal dominance graph and the area below the receiver operating characteristic curve. J Math Psychol 12:387–415

    Article  Google Scholar 

  34. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  35. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    CAS  PubMed  Google Scholar 

  36. Ferguson MA, Vaidya V, Bonventre JV (2008) Biomarkers of nephrotoxic acute kidney injury. Toxicology 245:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vart P, Scheven L, Lambers Heerspink HJ et al (2016) Urine albumin-creatinine ratio versus albumin excretion for albuminuria staging: a prospective longitudinal cohort study. Am J Kidney Dis 67(1):70–78

    Article  CAS  PubMed  Google Scholar 

  38. Brzin J, Popovic T, Turk V et al (1984) Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 118:103–109

    Article  CAS  PubMed  Google Scholar 

  39. Strojan P, Oblak I, Svetic B et al (2004) Cysteine proteinase inhibitor cystatin C in squamous cell carcinoma of the head and neck: relation to prognosis. Br J Cancer 90:1961–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiyosue A, Hirata Y, Ando J et al (2010) Plasma cystatin C concentration reflects the severity of coronary artery disease in patients without chronic kidney disease. Circ J 74:2441–2447

    Article  CAS  PubMed  Google Scholar 

  41. Ruan ZB, Zhu L, Yin YG et al (2014) Cystatin C, N-terminal probrain natriuretic peptides and outcomes in acute heart failure with acute kidney injury in a 12-month follow-up: insights into the cardiorenal syndrome. J Res Med Sci 19:404–409

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaur G, Levy E (2012) Cystatin C in Alzheimer’s disease. Front Mol Neurosci 5:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler JM, Umar Sharif U, Ali M et al (2015) A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer’s disease. Hum Genet 2015 134(7):705–715

    CAS  Google Scholar 

  44. Liu F, Yang H, Chen H et al (2015) High expression of neutrophil gelatinase-associated lipocalin (NGAL) in the kidney proximal tubules of diabetic rats. Adv Med Sci 60:133–138

    Article  PubMed  Google Scholar 

  45. Kuwabara T, Mori K, Mukoyama M et al (2009) Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int 75:285–294

    Article  CAS  PubMed  Google Scholar 

  46. Ralib A, Pickering JW, Shaw GM et al (2014) The clinical utility window for acute kidney injury biomarkers in the critically ill. Crit Care 18:601

    Article  PubMed  PubMed Central  Google Scholar 

  47. Okamura H, Tsutsui H, Toshinori K et al (1995) Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378:88–91

    Article  CAS  PubMed  Google Scholar 

  48. Yano T, Nozaki Y, Kinoshita K et al (2015) The pathological role of IL-18Rα in renal ischemia/reperfusion injury. Lab Invest 95:78–91

    Article  CAS  PubMed  Google Scholar 

  49. Ichimura T, Bonventre JV, Bailly V et al (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142

    Article  CAS  PubMed  Google Scholar 

  50. Bailly V, Zhang Z, Meier W et al (2002) Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 277:39739–39748

    Article  CAS  PubMed  Google Scholar 

  51. Zwiers AJM, de Wildt SN, vanRosmalen J et al (2015) Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study. Crit Care 19:181

    Article  PubMed  PubMed Central  Google Scholar 

  52. Parikh CR, Thiessen-Philbrook H, Garg AX et al (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. http://www.niddk.nih.gov/health-information/health-communication-programs/nkdep/lab-evaluation/gfr/creatinine-standardization/recommendations/Pages/recommendations.aspx. Webpage accessed 22 Jan 2016

  54. Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52(1):5–18

    Article  CAS  PubMed  Google Scholar 

  55. Venot M, Weis L, Clec’h C et al (2015) Acute kidney injury in severe sepsis and septic shock in patients with and without diabetes mellitus: a multicenter study. PLoS One 10(5):e0127411

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rangel-Frausto MS, Pittet D, Costigan M et al (1995) The natural history of the systemic inflammatory response syndrome (SIRS): a prospective study. JAMA 273:117–123

    Article  CAS  PubMed  Google Scholar 

  57. Osterman M, Chang R, Riyadh ICU Program Users Group (2008) Correlation between the AKI classification and outcome. Crit Care 12:R144

    Article  Google Scholar 

  58. Ricci Z, Cruz D, Ronco C (2008) The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int 73:538–546

    Article  CAS  PubMed  Google Scholar 

  59. Nisula S, Yang R, Poukkanen M et al (2015) Predictive value of urine interleukin-18 in the evolution and outcome of acute kidney injury in critically ill adult patients. Br J Anaesth 114:460–468

    Article  CAS  PubMed  Google Scholar 

  60. Umbro I, Gentile G, Tinti F et al (2016) Recent advances in pathophysiology and biomarkers of sepsis-induced acute kidney injury. J Infect 72(2):131–142

    Article  PubMed  Google Scholar 

  61. Zarjou A, Agarwal A (2011) Sepsis and acute kidney injury. J Am Soc Nephrol 22:999–1006

    Article  PubMed  Google Scholar 

  62. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  CAS  PubMed  Google Scholar 

  63. Riedemann NC, Guo RF, Ward PA (2003) The enigma of sepsis. J Clin Invest 112:460–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bellomo R, Bagshaw S, Langenberg C, Ronco C (2007) Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156:1–9

    Article  PubMed  Google Scholar 

  65. Bagshaw SM, Langenberg C, Haase M et al (2007) Urinary biomarkers in septic acute kidney injury. Intensive Care Med 33:1285–1296

    Article  CAS  PubMed  Google Scholar 

  66. Raimundo M, Crichton S, Syed Y et al (2016) Low systemic oxygen delivery and BP and risk of progression of early AKI. Clin J Am Soc Nephrol 10(8):1340–1349

    Article  Google Scholar 

  67. Landoni G, Baiardo Redaelli M, Pisano A (2016) Dopamine derivatives and acute kidney injury: the search for the magic bullet continues … and leads to new (magic?) targets. Nephrol Dial Transplant 31(4):512–514

    Google Scholar 

  68. Husi H, Sanchez-Nino MD, Delles C et al (2013) A combinatorial approach of proteomics and system biology in unravelling the mechanisms of acute kidney injury (AKI): involvement of NMDA receptor GRIN1 in murine AKI. BMC Syst Biol 7:110

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boyd JH, McConechy M, Walley KR (2014) Acute organ injury is associated with alterations in the cell-free plasma transcriptome. Intensive Care Med Exp 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stafford-Smith M, Li YJ, Mathew JP et al (2015) Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci. Kidney Int 88(4):823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang J, Zhuang S (2015) Epigenetics in acute kidney injury. Curr Opin Nephrol Hypertens 24:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hoek FJ, Kemperman AW, Krediet RT (2003) A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18:2024–2031

    Article  CAS  PubMed  Google Scholar 

  74. Kym D, Cho YS, Yoon J et al (2015) Evaluation of diagnostic biomarkers for acute kidney injury in major burn patients. Ann Surg Treat Res 88:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nejat M, Pickering JW, Walker RJ et al (2010) Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transplant 25:3283–3289

    Article  CAS  PubMed  Google Scholar 

  76. Cruz DN, deCal M, Garzotto F et al (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451

    Article  CAS  PubMed  Google Scholar 

  77. Wang B, Chen G, Zhang J et al (2015) Increased neutrophil gelatinase-associated lipocalin is associated with mortality and multiple organ dysfunction syndrome in severe sepsis and septic shock. Shock 44:234–238

    Article  PubMed  Google Scholar 

  78. Zhou F, Luo Q, Wang L, Han L (2016) Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg 49(3):746–755

    Article  PubMed  Google Scholar 

  79. Liu Y, Guo W, Zhang J et al (2013) Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 62:1058–1067

    Article  CAS  PubMed  Google Scholar 

  80. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  81. Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. The Statistician 32:307–317

    Article  Google Scholar 

  82. Hildebrand AM, Liu K, Shariff SZ et al (2015) Characteristics and outcomes of AKI treated with dialysis during pregnancy and the postpartum period. J Am Soc Nephrol 26(12):3085–3091

    Article  CAS  PubMed  Google Scholar 

  83. Rimes-Stigare C, Frumento P, Bottai M et al (2015) Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill: a Swedish multi-centre cohort study. Crit Care 19:221

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nisula S, Vaara ST, Kaukonen KM et al (2013) Six-month survival and quality of life of intensive care patients with acute kidney injury. Crit Care 17:R250

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis X. Dillon MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dillon, F.X., Camporesi, E.M. (2016). Acute Kidney Injury: Definitions, Incidence, Diagnosis, and Outcome. In: Landoni, G., Pisano, A., Zangrillo, A., Bellomo, R. (eds) Reducing Mortality in Acute Kidney Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-33429-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33429-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33427-1

  • Online ISBN: 978-3-319-33429-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics