Skip to main content

Assembly Assisted by Augmented Reality (A3R)

  • Chapter
  • First Online:
Intelligent Systems and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 650))

Abstract

Traditionally, assembly instructions are written in the form of paper or digital manuals. These manuals contain descriptive text, photos or diagrams to guide the user through the assembly sequence from the beginning to the final state. To change this paradigm, an augmented reality system is proposed to guide users in assembly tasks. The system recognizes each part to be assembled through image processing techniques and guides the user through the assembly process with virtual graphic signs. The system checks whether the parts are properly assembled and alerts the user when the assembly has finished. Some assembly assisted by augmented reality systems use some kind of customized device, such as head mounted displays or markers to track camera position and to identify assembly parts. These two features restrict the spread of the technology whence, in this work, customized devices and markers to track and identify parts are not used and all the processing is executed on an embedded software in an off-the-shelf device without the need of communication with other computers to any kind of processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang, A., Owen, C., Biocca, F., Mou, W.: Comparative effectiveness of augmented reality in object assembly. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 73–80. ACM Press, New York, New York, USA (2003). doi:10.1145/642625.642626

  2. Wiedenmaier, S., Oehme, O., Schmidt, L., Luczak, H.: Augmented reality (AR) for assembly processes design and experimental evaluation. Int. J. Hum. Comput. Interact. 16(3), 497–514 (2003)

    Article  Google Scholar 

  3. Baird, K.M., Barfield, W.: Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Real. 4(4), 250–259 (1999). doi:10.1007/BF01421808

    Article  Google Scholar 

  4. Caudell, T., Mizell, D.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, pp. 659–669 vol. 2 (1992). doi:10.1109/HICSS.1992.183317

  5. Feiner, S., Macintyre, B., Seligmann, D.: Knowledge-based augmented reality. Commun. ACM 36(7), 53–62 (1993). doi:10.1145/159544.159587

    Article  Google Scholar 

  6. Reiners, D., Stricker, D., Klinker, G., Müller, S.: Augmented reality for construction tasks: Doorlock assembly. In: Proceedings of the IEEE and ACM IWAR (1998)

    Google Scholar 

  7. Odenthal, B., Mayer, M.P., Kabuß, W., Schlick, C.M.: A comparative study of head-mounted and table-mounted augmented vision systems for assembly error detection. Hum. Factors Ergon. Manuf. Serv. Ind. 24(1), 105–123 (2014). doi:10.1002/hfm

    Article  Google Scholar 

  8. Boud, A., Haniff, D., Baber, C., Steiner, S.: Virtual reality and augmented reality as a training tool for assembly tasks. In: 1999 IEEE International Conference on Information Visualization (Cat. No. PR00210), pp. 32–36. IEEE Comput. Soc (1999). doi:10.1109/IV.1999.781532

  9. Zauner, J., Haller, M., Brandl, A., Hartman, W.: Authoring of a mixed reality assembly instructor for hierarchical structures. In: Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003, pp. 237–246. IEEE Comput. Soc (2003). doi:10.1109/ISMAR.2003.1240707

  10. Salonen, T., Sääski, J., Hakkarainen, M., Kannetis, T., Perakakis, M., Siltanen, S., Potamianos, A., Korkalo, O., Woodward, C.: Demonstration of assembly work using augmented reality. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval - CIVR ’07, pp. 120–123. ACM Press, New York, New York, USA (2007). doi:10.1145/1282280.1282301

  11. Henderson, S., Feiner, S.: Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans. Vis. Comput. Graph. 17(10), 1355–1368 (2011)

    Article  Google Scholar 

  12. Wang, Z.B., Ong, S.K., Nee, A.Y.C.: Augmented reality aided interactive manual assembly design. Int. J. Adv. Manuf. Technol. 69(5–8), 1311–1321 (2013). doi:10.1007/s00170-013-5091-x

    Article  Google Scholar 

  13. Khuong, B.M., Kiyokawa, K., Miller, A., La Viola, J.J., Mashita, T., Takemura, H.: The effectiveness of an AR-based context-aware assembly support system in object assembly. In: 2014 IEEE Virtual Reality (VR), pp. 57–62 (2014). doi:10.1109/VR.2014.6802051

  14. Chiang, H.K., Chou, Y.Y., Chang, L.C., Huang, C.Y., Kuo, F.L., Chen, H.W.: An augmented reality learning space for PC DIY. In: Proceedings of the 2nd Augmented Human International Conference, p. 12. ACM Press, New York, New York, USA (2011). doi:10.1145/1959826.1959838

  15. Kitagawa, M., Yamamoto, T.: 3D puzzle guidance in augmented reality environment using a 3D desk surface projection. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 133–134. IEEE (2011). doi:10.1109/3DUI.2011.5759241

  16. Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G.: Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 65(2), 270–278 (2014). doi:10.1016/j.compind.2013.11.004

    Article  Google Scholar 

  17. Hakkarainen, M., Woodward, C., Billinghurst, M.: Augmented assembly using a mobile phone. In: 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality pp. 167–168 (2008). doi:10.1109/ISMAR.2008.4637349

  18. Nakanishi, M., Ozeki, M., Akasaka, T., Okada, Y.: Human factor requirements for applying augmented reality to manuals in actual work situations. In: 2007 IEEE International Conference on Systems, Man and Cybernetics, pp. 2650–2655 (2007). doi:10.1109/ICSMC.2007.4413588

  19. Li, Y., Kameda, Y., Ohta, Y.: AR replay in a small workspace. In: 2013 23rd International Conference on Artificial Reality and Telexistence (ICAT), pp. 97–101. IEEE (2013). doi:10.1109/ICAT.2013.6728913

  20. Murakami, K., Kiyama, R., Narumi, T., Tanikawa, T., Hirose, M.: Poster: A wearable augmented reality system with haptic feedback and its performance in virtual assembly tasks. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 161–162. IEEE (2013). doi:10.1109/3DUI.2013.6550228

  21. Yuan, M.L., Ong, S.K., Nee, A.Y.C.: Augmented reality for assembly guidance using a virtual interactive tool. Int. J. Prod. Res. 46(7), 1745–1767 (2008). doi:10.1080/00207540600972935

    Article  MATH  Google Scholar 

  22. Novak-Marcincin, J., Barna, J., Janak, M., Novakova-Marcincinova, L., Torok, J.: Visualization of intelligent assembling process by augmented reality tools application. In: 2012 4th IEEE International Symposium on Logistics and Industrial Informatics, pp. 33–36. IEEE (2012). doi:10.1109/LINDI.2012.6319505

  23. Serván, J., Mas, F., Menéndez, J., Ríos, J.: Assembly work instruction deployment using augmented reality. Key Eng. Mater. 502, 25–30 (2012). doi:10.4028/www.scientific.net/KEM.502.25

    Article  Google Scholar 

  24. Alvarez, H., Aguinaga, I., Borro, D.: Providing guidance for maintenance operations using automatic markerless augmented Reality system. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality pp. 181–190 (2011). doi:10.1109/ISMAR.2011.6092385

  25. Wang, Z.B., Shen, Y., Ong, S.K., Nee, A.Y.C.: Assembly design and evaluation based on bare-hand interaction in an augmented reality environment. In: 2009 International Conference on CyberWorlds, pp. 21–28. IEEE (2009). doi:10.1109/CW.2009.15

  26. Ong, S., Wang, Z.: Augmented assembly technologies based on 3D bare-hand interaction. CIRP Ann. - Manuf. Technol. 60(1), 1–4 (2011). doi:10.1016/j.cirp.2011.03.001

    Article  Google Scholar 

  27. Sääski, J., Salonen, T., Hakkarainen, M., Siltanen, S., Woodward, C., Lempiäinen, J.: Integration of design and assembly using augmented reality. Micro-Assem. Technol. Appl. 260, 395–404 (2008). doi:10.1007/978-0-387-77405-3_39

    Article  Google Scholar 

  28. Westerfield, G.: Intelligent Augmented Reality Training for Assembly and Maintenance. Master of science, University of Canterbury (2012)

    Google Scholar 

  29. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.: Augmented reality technologies, systems and applications. Multimed. Tools Appl. 51(1), 341–377 (2010). doi:10.1007/s11042-010-0660-6

    Article  Google Scholar 

  30. Homem de Mello, L.S., Sanderson, A.C.: Representations of mechanical assembly sequences. IEEE Trans. Robot. Autom. 7(2), 211–227 (1991). doi:10.1109/70.75904

    Google Scholar 

  31. Gottipolu, R.B., Ghosh, K.: A simplified and efficient representation for evaluation and selection of assembly sequences. Comput. Ind. 50(3), 251–264 (2003). doi:10.1016/S0166-3615(03)00015-0

    Article  Google Scholar 

  32. Golomb, S.W.: Polyominoes: puzzles, patterns, problems, and packings, 2nd edn. Princeton University Press, Princeton (1996)

    Google Scholar 

  33. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision 1(c), 666–673 (1999). doi:10.1109/ICCV.1999.791289

  34. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  35. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis., Graph., Image Process. 30(1), 32–46 (1985). doi:10.1016/0734-189X(85)90016-7

    Article  MATH  Google Scholar 

  36. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves (1972). doi:10.1016/S0146-664X(72)80017-0

    Google Scholar 

  37. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr.: Int. J. Geogr. Inf. Geovis. 10(2), 112–122 (1973). doi:10.3138/FM57-6770-U75U-7727

    Google Scholar 

  38. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991). doi:10.1109/34.75509

    Article  MATH  Google Scholar 

  39. Cakmakov, D., Celakoska, E.: Estimation of curve similarity using turning functions. Int. J. Appl. Math. 15, 403–416 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Okamoto Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okamoto, J., Nishihara, A. (2016). Assembly Assisted by Augmented Reality (A3R). In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. Studies in Computational Intelligence, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-33386-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33386-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33384-7

  • Online ISBN: 978-3-319-33386-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics