Advertisement

The Basic Model, Definitions and Results

  • Gioia CarinciEmail author
  • Anna De Masi
  • Cristian Giardinà
  • Errico Presutti
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 12)

Abstract

In this chapter we expand the analysis presented in the Introduction by giving a detailed definition of the control problem and its relaxed version.

References

  1. 1.
    A. Fasano, Mathematical models of some diffusive processes with free boundaries. SIMAI e-Lecture Notes (2008)Google Scholar
  2. 2.
    A. Fasano, M. Primicerio, General free boundary problems for the heat equation. I. J. Math. Anal. Appl. 57, 694–723 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Fasano, M. Primicerio, General free boundary problems for the heat equation. II. J. Math. Anal. Appl. 58, 202–231 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Fasano, M. Primicerio, General free boundary problems for the heat equation. III. J. Math. Anal. Appl. 59, 1–14 (1977)Google Scholar
  5. 5.
    A. Fasano, M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions. J. Math. Anal. Appl. 72, 247–273 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Crank, R.S. Gupta, A method for solving moving boundary problems in heat-flow using cubic splines or polynomials. J. Inst. Math. Appl. 10, 296–304 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Fasano, M. Primicerio, S.D. Howison, J.R. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension. Q. Appl. Math. 48, 153–168 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Fasano, M. Primicerio, S.D. Howison, J.R. Ockendon, On the singularities of one-dimensional Stefan problems with supercooling, in Mathematical Models for Phase Change Problems, Int. Ser. Numerical Mathematics 88, ed. by J.F. Rodrigues (Birkhauser, Basel, 1989), pp. 215–225CrossRefGoogle Scholar
  9. 9.
    J.R. Ockendon, The role of the Crank-Gupta model in the theory of free and moving boundary problems. Adv. Comput. Math. 6, 281–293 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G.M. Lieberman, Second order parabolic differential equations. World scientific (1996)Google Scholar
  11. 11.
    A. Friedman, Partial Differential Equations of Parabolic Type (Holt, Reinhart, and Winston Inc., New York, 1964)zbMATHGoogle Scholar
  12. 12.
    E. De Giorgi, New ideas in calculus of variations and geometric measure theory, in Proceedings of the Conference Motion by Mean Curvature and Related Topics, held in Trento, 1992, (Walter de Gruyter, Berlin 1994), pp. 63–69Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Gioia Carinci
    • 1
    Email author
  • Anna De Masi
    • 2
  • Cristian Giardinà
    • 3
  • Errico Presutti
    • 4
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Dipartimento di MatematicaUniversita di L’AguilaL’AquilaItaly
  3. 3.Dipartimento di MatematicaUniversità di Modena e Reggio EmiliaModenaItaly
  4. 4.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations