Introduction to Part I

  • Gioia CarinciEmail author
  • Anna De Masi
  • Cristian Giardinà
  • Errico Presutti
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 12)


In Part I of this work we study a model for mass transport where Fick’s law is satisfied.


  1. 1.
    J.B.J. Fourier, Théorie analytique de la chaleur (Firmin-Didot, Paris, 1822)zbMATHGoogle Scholar
  2. 2.
    J. Douglas, A uniqueness theorem for the solution of a Stefan problem. Proc. Am. Math. Soc. 8(2), 402–408 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Fasano, Mathematical models of some diffusive processes with free boundaries. SIMAI e-Lecture Notes (2008)Google Scholar
  4. 4.
    A. Friedman, Free boundary problems for parabolic equations. Technical Report, Report No. 28, Office of Naval Research (1958)Google Scholar
  5. 5.
    S. Luckhaus, Solutions for the two phase Stefan problem with the Gibbs Thompson law for the melting temperature. Eur. J. Appl. Math. 1, 101–112 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Visintin, in Handbook of Differential Equations: Evolutionary Differential Equations vol. IV, eds. by C. Dafermos, M. Pokorny. Introduction to Stefan-type problems, chap. 8, (North-Holland, Amsterdam, 2008), pp. 377–484Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Gioia Carinci
    • 1
    Email author
  • Anna De Masi
    • 2
  • Cristian Giardinà
    • 3
  • Errico Presutti
    • 4
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Dipartimento di MatematicaUniversita di L’AguilaL’AquilaItaly
  3. 3.Dipartimento di MatematicaUniversità di Modena e Reggio EmiliaModenaItaly
  4. 4.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations