Advertisement

Independent Walkers with Current Reservoirs

  • Gioia CarinciEmail author
  • Anna De Masi
  • Cristian Giardinà
  • Errico Presutti
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 12)

Abstract

In this chapter we consider the model introduced in (Hydrodynamic limit in a particle system with topological interactions Arab J Math 3:381–417, 2014, [1]), consisting of independent particle moving as continuous time random walkers on a finite lattice, including injection of particles at the origin and removal from the rightmost occupied site. We discuss similarities and differences with the setting developed in Part I.

References

  1. 1.
    G. Carinci, A. De Masi, C. Giardinà, E. Presutti, Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3, 381–417 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Carinci, A. De Masi, C. Giardinà, E. Presutti, Super-hydrodynamic limit in interacting particle system. J. Stat. Phys. 155, 867–887 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. De Masi, E. Presutti, D. Tsagkarogiannis, M.E. Vares, Current reservoirs in the simple exclusion process. J. Stat. Phys. 144, 1151–1170 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. De Masi, E. Presutti, D. Tsagkarogiannis, M.E. Vares, Truncated correlations in the stirring process with births and deaths. Electron. J. Probab. 17, 1–35 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. De Masi, E. Presutti, D. Tsagkarogiannis, Fourier law, phase transitions and the stationary Stefan problem. Arch. Ration. Mech. Anal. 201, 681–725 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. De Masi, P.A. Ferrari, E. Presutti, Symmetric simple exclusion process with free boundaries. Probab. Theory Relat. fields 161, 155–193 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. De Masi, P.A. Ferrari, Separation versus diffusion in a two species system. Braz. J. Probab. Stat. 29, 387–412 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J. Anselmi, B. D’Auria, N. Walton, Closed queueing networks under congestion: non-bottleneck independence and bottleneck convergence. Math. Oper. Res. 38, 469–491 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. Srinivasan, Queues in series via interacting particle. Math. Oper. Res. 18, 39–50 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Gioia Carinci
    • 1
    Email author
  • Anna De Masi
    • 2
  • Cristian Giardinà
    • 3
  • Errico Presutti
    • 4
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Dipartimento di MatematicaUniversita di L’AguilaL’AquilaItaly
  3. 3.Dipartimento di MatematicaUniversità di Modena e Reggio EmiliaModenaItaly
  4. 4.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations