An Adaptive Multi Agent Service Discovery for Peer to Peer Cloud Services

  • Moses Olaifa
  • Sunday Ojo
  • Tranos Zuva
Part of the Studies in Computational Intelligence book series (SCI, volume 647)


Cloud computing is evolving into a popular platform that enables on-demand provisioning of computing resources to a growing population of clients. Core to the provisioning of service in the cloud is the discovery of these services in an efficient and timely manner. Centralized and hierarchical approaches to service discovery have exhibited bottlenecks as network load increases and limitation in scalability. Efforts have been made in combining cloud systems and Peer to peer P2P systems to address the problem encountered in the conventional service discovery approaches but not without a new set of challenges ranging from network flooding to poor performance in dynamic networks. This paper presents an efficient and scalable approach for semantic cloud service discovery in a P2P cloud environment. The approach is based on Learning Automata LA and Ant Colony Optimization ACO. The ability of ACO to adapt to changes in real time makes it a better choice in dynamic environments such as cloud. We evaluate this approach against the some existing P2P service discovery approaches, the proposed mechanism showed an improved performance.


  1. 1.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, 2008. GCE’08, pp. 1–10. IEEE (2008)Google Scholar
  2. 2.
    Sun, L., Dong, H., Ashraf, J.: Survey of service description languages and their issues in cloud computing. In: Eighth International Conference on Semantics, Knowledge and Grids (SKG), 2012, pp. 128–135. IEEE (2012)Google Scholar
  3. 3.
    Mell, P., Grance, T.: The NIST definition of cloud computing. Microsoft Live Mesh (2011).
  4. 4.
    Goscinski, A., Brock, M.: Toward dynamic and attribute based publication, discovery and selection for cloud computing. Fut. Gen. Comput. Syst. 26(7), 947–970 (2010)CrossRefGoogle Scholar
  5. 5.
    Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastructure. Elsevier, New York (2003)Google Scholar
  6. 6.
    Perrey, R., Lycett, M.: Service-oriented architecture. In: Symposium on Applications and the Internet Workshops, 2003. Proceedings, pp. 116–119. IEEE (2003)Google Scholar
  7. 7.
    Conner, P., Robinson, S.: Service-oriented architecture. U.S. Patent Application 11/388,624 (2006)Google Scholar
  8. 8.
    Bellwood, T., Clment, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.L., Riegen, C.: The universal description, discovery and integration (uddi) specification. Rapport technique, Comit OASIS (2002)Google Scholar
  9. 9.
    Skoutas, D., Sacharidis, D., Kantere, V., Sellis, T.: Efficient Semantic Web Service Discovery in Centralized and P2P Environments. Springer, Berlin (2008)CrossRefGoogle Scholar
  10. 10.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, 2001. Proceedings, pp. 181–194. IEEE (2001)Google Scholar
  11. 11.
    Kaur, D., Sengupta, J.: Resource discovery in web-services based grids. World Acad. Sci. Eng. Technol. 31, 284–288 (2007)Google Scholar
  12. 12.
    Molt, G., Hernndez, V., Alonso, J.M.: A service-oriented WSRF-based architecture for metascheduling on computational grids. Fut. Gen. Comput. Syst. 24(4), 317–328 (2008)Google Scholar
  13. 13.
    Suryanarayana, G., Taylor, R.N.: A survey of trust management and resource discovery technologies in peer-to-peer applications (2004)Google Scholar
  14. 14.
    Meshkova, E., Riihijrvi, J., Petrova, M., Mhnen, P.: A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput. Netw. 52(11), 2097–2128 (2008)CrossRefGoogle Scholar
  15. 15.
    Fletcher, G.H., Sheth, H.A., Brner, K.: Unstructured peer-to-peer networks: Topological properties and search performance. In: Agents and Peer-to-Peer Computing, pp. 14–27. Springer, Berlin (2005)Google Scholar
  16. 16.
    Amoretti, M., Zanichelli, F., Conte, G.: SP2A: a service-oriented framework for P2P-based grids. In: Proceedings of the 3rd International Workshop on Middleware for Grid Computing, pp. 1–6. ACM (2005)Google Scholar
  17. 17.
    Wu, C.L., Liao, C.F., Fu, L.C.: Service-oriented smart-home architecture based on OSGi and mobile-agent technology. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 37(2), 193–205 (2007)CrossRefGoogle Scholar
  18. 18.
    Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description language (WSDL) 1.1. (2001)
  19. 19.
    Akkiraju, R., Farrell, J., Miller, J.A., Nagarajan, M., Sheth, A.P., Verma, K.: Web service semantics-wsdl-s (2005)Google Scholar
  20. 20.
    Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D., McDermott, D., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web service description for the semantic web. In: The Semantic WebISWC 2002, pp. 348–363. Springer, Berlin (2002)Google Scholar
  21. 21.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Martin, D., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: (2004). OWL-S: Semantic markup for web services. W3C member submission, 22 April 2007Google Scholar
  22. 22.
    McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C recommendation, vol. 10 (2004)Google Scholar
  23. 23.
    Sheth, A.P.: Semantic Web Process Lifecycle: role of semantics in annotation, discovery, composition and orchestration. In: WWW 2003 Workshop on E.Services and the Semantic Web, Budapest (2003).
  24. 24.
    Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S., Paolucci, M., Parsia, B., et al.: OWL-S: semantic markup for web services. W3C Member Submission (2004)Google Scholar
  25. 25.
    Nguyen, D.K., Lelli, F., Papazoglou, M.P., Van Den Heuvel, W.J.: Blueprinting approach in support of cloud computing. Fut. Internet 4(1), 322–346 (2012)CrossRefGoogle Scholar
  26. 26.
    Keahey, K., Tsugawa, M., Matsunaga, A., Fortes, J.A.: Sky computing. IEEE Internet Comput. 13(5), 43–51 (2009)CrossRefGoogle Scholar
  27. 27.
    Cardoso, J., Barros, A., May, N., Kylau, U.: Towards a unified service description language for the internet of services: requirements and first developments. In: 2010 IEEE International Conference on Services Computing (SCC), pp. 602–609. IEEE (2010)Google Scholar
  28. 28.
    Sun, Y.L., Harmer, T., Stewart, A., Wright, P.: Mapping application requirements to cloud resources. In: Euro-Par: Parallel Processing Workshops. Springer, Berlin (2011)Google Scholar
  29. 29.
    Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K.: Semantic matching of web services capabilities. In: The Semantic WebISWC 2002, pp. 333–347. Springer, Berlin (2002)Google Scholar
  30. 30.
    Org, U.D.D.I.: Universal Description, Discovery and Integration. UDDI Technical White Paper (2000).
  31. 31.
    Richards, R.: Universal Description, Discovery, and Integration (UDDI). In: Pro PHP XML and Web Services, pp. 751–780. Apress (2006)Google Scholar
  32. 32.
    Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide Web 7(2), 211–229 (2004)CrossRefGoogle Scholar
  33. 33.
    Basters, U., Klusch, M.: RS2D: fast adaptive search for semantic web services in unstructured P2P networks. In: The Semantic Web-ISWC 2006, pp. 87–100. Springer, Berlin (2006)Google Scholar
  34. 34.
    Paolucci, M., Sycara, K.P., Nishimura, T., Srinivasan, N.: Using DAML-S for P2P discovery. In: ICWS, pp. 203–207 (2003)Google Scholar
  35. 35.
    Hameurlain, A., Morvan, F., Samad, M.E.: Large scale data management in grid systems: a survey. In: 3rd International Conference on Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008, pp. 1–6. IEEE (2008)Google Scholar
  36. 36.
    Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Hong, N.P.C., Collins, B., Westhead, M.: The design and implementation of Grid database services in OGSA-DAI. Concurr. Comput.: Pract. Exp. 17(2), 357–376 (2005)Google Scholar
  37. 37.
    Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: ARMS: an agent-based resource management system for grid computing. Sci. Programm. 10(2), 135–148 (2002)Google Scholar
  38. 38.
    Tan, Y., Han, J., Wu, Y.: A multi-agent based efficient resource discovery mechanism for grid systems. J. Comp. Inf. Syst. 6(11), 3623–3631 (2010)Google Scholar
  39. 39.
    Han, L., Berry, D.: Semantic-supported and agent-based decentralized grid resource discovery. Fut. Gen. Comput. Syst. 24(8), 806–812 (2008)CrossRefGoogle Scholar
  40. 40.
    Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P., Mordacchini, M., Pennanen, M., Haridi, S.: Peer-to-Peer resource discovery in grids: models and systems. Fut. Gen. Comput. Syst. 23(7), 864–878 (2007)Google Scholar
  41. 41.
    Ranjan, R., Harwood, A., Buyya, R.: Peer-to-peer-based resource discovery in global grids: a tutorial. IEEE Commun. Surv. Tutor. 10(2), 6–33 (2008)CrossRefGoogle Scholar
  42. 42.
    Narendra, K.S., Thathachar, M.A.: Learning automata: an introduction2012: Courier Dover Publications (2012)Google Scholar
  43. 43.
    Narendra, K.S., Thathachar, M.: Learning automata—a survey. IEEE Trans. Syst. Man Cybern. 4, 323–334 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  45. 45.
    Mullen, R.J., et al.: A review of ant algorithms. Expert Syst. Appl. 36(6), 9608–9617 (2009)CrossRefGoogle Scholar
  46. 46.
    Kocak, T., Lacks, D.: Design and analysis of a distributed grid resource discovery protocol. Cluster Comput. 15(1), 37–52 (2012)CrossRefGoogle Scholar
  47. 47.
    Zhou, J., Abdulla, N. A., Shi, Z.: A hybrid P2P approach to service discovery in the cloud. Int. J. Inf. Technol. Comput. Sci. 3(1), 1 (2011)Google Scholar
  48. 48.
    Winick, J., Jamin, S.:. Inet-3.0: internet topology generator. Technical Report CSE-TR-456-02, University of Michigan (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of ICT, Department of Computer Systems EngineeringTshwane University of TechnologyPretoriaSouth Africa
  2. 2.Faculty of ICT, Tshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations