Advertisement

A New Architecture to Guarantee QoS Using PSO in Fixed WiMAX Networks

  • Eden Ricardo Dosciatti
  • Augusto Foronda
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 647)

Abstract

The sharing of communication networks, especially with multimedia services such as IPTV, video conferencing and VoIP has increased in recent years. These services require more resources and generate a great demand on the network infrastructure, requiring the guarantee quality of services. For this, scheduling mechanisms, call admission control and traffic policing should be present to guarantee quality of service. The networks of communication for wireless broadband, based on the IEEE 802.16 standard, called WiMAX are used in this work, because this standard only specify the mechanisms of how these policies should be implemented. Based on these factors, a new architecture was developed in order guarantee the quality of service, using the meta-heuristic Particle Swarm Optimization for fixed WiMAX networks, presenting a method for calculating the duration of the time frame, which allows a control of queues in the scheduler in order to uplink traffic from the base station.

Keywords

Particle Swarm Optimization Call Admission Control OFDM Symbol Subscriber Station Video Traffic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank all researchers and collaborators at the Advanced Nucleous of Communication Technology of UTFPR.

References

  1. 1.
    Rosa, E.C., Guardiero, P.R.: Cac and Uplink Scheduling Algorithms in WiMAX Networks. Telecommun. Mag. 13(2), 32–39 (2011). ISSN 1516-2338Google Scholar
  2. 2.
    Taghipoor, M., Mjafari, S., Hosseini, V.: Quality of service and resource allocation in WiMAX. In-Tech Croatia (2012). doi: 10.5772/2454
  3. 3.
    IEEE Standard for Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2012 (Revision of IEEE Std 802.16-2009), pp. 1–2542 (2012). doi: 10.1109/IEEESTD.2012.6272299
  4. 4.
    Kennedy, J., Eberhart, R.C.: Particle Swarm optimization. In: IEEE Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). doi: 10.1109/ICNN.1995.488968
  5. 5.
    Sayenko, A., Alanen, O., Hämäläinen, T.: Scheduling Solution for the IEEE 802.16 Base Station. Comput. Netw. 52, 96–115 (2008). doi: 10.1016/j.comnet.2007.09.021 CrossRefzbMATHGoogle Scholar
  6. 6.
    Masri, M., Abdellatif, S., Juanole, G.: An Uplink Bandwidth Management Framework for IEEE 802.16 with QoS Guarantees. NETWORKING. Lecture Notes in Computer Science, vol. 5550, pp. 651–663. Springer, Berlin (2009). doi: 10.1007/978-3-642-01399-7_51
  7. 7.
    Borin, J.F., Fonseca, N.L.S.: Uplink Scheduler and Admission Control for the IEEE 802.16 Standard. In: Global Telecommunications Conference, GLOBECOM 2009, IEEE, vol 1, issue no. 1, pp. 1–6 (2009). doi: 10.1109/GLOCOM.2009.5425779
  8. 8.
    Ferreira, F.A.: Uma Proposta de Escalonamento Baseado na Disciplina Priority Queuing (PQ) para Redes IEEE 802.16. UFU, 2011, master thesis (in portuguese). http://repositorio.ufu.br/handle/123456789/405. Accessed 17 Oct 2014
  9. 9.
    Stiliadis, D., Varma, A.: Latency-rate servers: a general model for analysis of traffic scheduling algorithms. IEEE/ACM Trans. Netw. 6, 611–624 (1998). doi: 10.1109/90.731196 CrossRefGoogle Scholar
  10. 10.
    Msadaa, I.C., Camara, D., Filali, F.: Scheduling and CAC in IEEE 802.16 Fixed BWNs: a comprehensive survey and taxonomy. IEEE Commun. Surv. Tutor. 12(4), 459–487 (2010). doi: 10.1109/SURV.2010.033010.00038
  11. 11.
    Dosciatti, E.R., Godoy Jr, W., Foronda, A.: An efficient approach of scheduling with call admission control to fixed WiMAX networks. IEEE Latin Am. Trans. 10(1), 1256–1264 (2012). doi: 10.1109/TLA.2012.6142470
  12. 12.
    Kernighan, B.W., Ritchie, D.M.C.: Teh C—Programming Language, 2nd edn. Prentice Hall, Englewwod Cliffs (1988)Google Scholar
  13. 13.
    NS-2. Network Simulator 2. http://www.isi.edu/nsnam/ns. Accessed 17 Oct 2014
  14. 14.
    Borin, J.F., Fonseca, N.L.S.: Simulator for WiMAX networks. Simul. Modell. Pract. Theory 16(7), 817–833 (2008). doi: 10.1016/j.simpat.2008.05.002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Federal University of Technology Paraná, UTFPRPato BrancoBrazil
  2. 2.Federal University of Technology Paraná, UTFPRCuritibaBrazil

Personalised recommendations