Chapter 9 Memories of Shock Wave Research at Sandia

  • James R. Asay
  • Lalit C. Chhabildas
  • R. Jeffery Lawrence
  • Mary Ann Sweeney
Chapter
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

These individual recollections present a window into the personal experiences of people who participated in the shock wave research program at Sandia. We made a strong effort to contact and encourage as many people as possible to participate. Over 80 people were contacted and about 40 provided recollections of their personal experiences. Each contributor was asked to provide a summary of their role in shock wave research at Sandia, bringing out any interesting events or anecdotes that happened along the way

References

  1. C.S. Alexander, J.R. Asay, T.A. Haill, Magnetically applied pressure-shear: a new method for direct measurement of strength at high pressure. J. Appl. Phys. 108, 126101 (2010)CrossRefGoogle Scholar
  2. M.U. Anderson, L.C. Chhabildas, W.D. Reinhart, Simultaneous PVDF/VISAR measurement technique for isentropic loading with graded density impactors, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes, vol. 429 (AIP, College Park, MD, 1998), pp. 841–844Google Scholar
  3. J.A. Ang, L.C. Chhabildas, B.G. Cour-Palais, E.L. Christiansen, J.L. Crews, Evaluation of Whipple bumper shields at 7 and 10 km/s. AIAA Paper No. 92–1590, 1–4 (1991)Google Scholar
  4. T. Ao, J.R. Asay, J.-P. Davis, M.D. Knudson, C.A. Hall, High-pressure quasi-isentropic loading and unloading of interferometer windows on the Veloce pulsed power generator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Elert, M.D. Furnish, R. Chau, N.C. Holmes, J. Nguyen, vol. 955 (AIP, College Park, MD, 2007), pp. 1157–1160Google Scholar
  5. T. Ao, J.R. Asay, S. Chantrenne, M.R. Baer, C.A. Hall, A compact strip-line pulsed power generator for isentropic compression experiments. Rev. Sci. Instrum. 79, 013903 (2008)CrossRefGoogle Scholar
  6. T. Ao, M.D. Knudson, J.R. Asay, J.P. Davis, Strength of lithium fluoride under shockless compression to 114 GPa. J. Appl. Phys. 106, 103507 (2009)CrossRefGoogle Scholar
  7. J.R. Asay, D.B. Hayes, Shock-compression and release behavior near melt states in aluminum. J. Appl. Phys. 46, 4789–4800 (1975)CrossRefGoogle Scholar
  8. J.R. Asay, J. Lipkin, A self-consistent technique for estimating the dynamic strength of a shock-loaded material. J. Appl. Phys. 49, 4242–4247 (1978)CrossRefGoogle Scholar
  9. J.R. Asay, L.C. Chhabildas, Some new developments in shock wave research. High pressure science and technology - 1979, in Proceedings of the VIIth international AIRAPT conference Part II, ed. by B. Vodar, P. Marteau (AIP, College Park, MD, 1980), pp. 958–964Google Scholar
  10. J.R. Asay, L.C. Chhabildas, Determination of the shear strength of shock-compressed 6061-T6 aluminum, in Shock waves and high-strain-rate phenomena in metals, ed. by M.A. Myers, L.E. Murr (Plenum, New York, NY, 1981), pp. 417–424CrossRefGoogle Scholar
  11. J.R. Asay, C.A. Hall, C.H. Konrad, W.M. Trott, G.A. Chandler, K.J. Fleming, K.G. Holland, L.C. Chhabildas, T.A. Mehlhorn, R. Vesey, T.G. Trucano, A. Hauer, R. Cauble, M. Foord, Use of z-pinch sources for high-pressure equation-of-state studies. Int. J. Impact Eng. 23, 27–38 (1999)CrossRefGoogle Scholar
  12. J.R. Asay, Isentropic compression experiments on the Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 261–266Google Scholar
  13. J.R. Asay, C.A. Hall, K.G. Holland, M.A. Bernard, W.A. Stygar, R.B. Spielman, S.E. Rosenthal, D.H. McDaniel, D.B. Hayes, Isentropic compression of iron with the Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 1151–1154Google Scholar
  14. M.R. Baer, W.M. Trott, Theoretical and experimental mesoscale studies of impact-loaded granular explosives and simulant materials, in Proceedings of the 12th International Detonation Symposium, San Diego, CA, Office of Naval Research Report ONR Report 333-05-2:939-950, ed. by J.M. Short, J.L. Maienschein (Office of Naval Research, San Diego, CA, 2002)Google Scholar
  15. M.R. Baer, W.M. Trott, Mesoscale studies of shock loaded tin sphere lattices, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, Y.M. Gupta, J.W. Forbes, vol. 706 (AIP, College Park, MD, 2004), pp. 517–520Google Scholar
  16. L.M. Barker, Measurement of Free Surface Motion by the Slanted Resistor Technology. Sandia National Laboratories Report SC-DR-610078 (Sandia National Laborator, Albuquerque, NM, 1961)Google Scholar
  17. L.M. Barker, Determination of Shock Wave and Particle Velocities from Slanted Resistor Data. Sandia National Laboratories Report SC004611 (RR) (Sandia National Laboratory, Albuquerque, NM, 1962)Google Scholar
  18. L.M. Barker, C.D. Lundergan, W. Herrmann, Dynamic response of aluminum. J. Appl. Phys. 35(4), 1203–1212 (1964)CrossRefGoogle Scholar
  19. K. Baumung, J. Singer, S.V. Razorenov, A.V. Utkin, Hydrodynamic proton beam-target interaction experiments using an improved line-imaging velocimeter, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, W.C. Tao, vol. 370 (AIP, College Park, MD, 1996), pp. 1015–1018Google Scholar
  20. R. Becker, Effects of crystal plasticity on materials loaded at high pressures and strain rates. Int. J. Plas. 20, 1983–2006 (2004)MATHCrossRefGoogle Scholar
  21. P.B. Bochev, C.J. Garasi, J.J. Hu, A.C. Robinson, R.S. Tuminaro, An improved algebraic multigrid method for solving Maxwell’s equations. SIAM J. Sci. Comp. 25(2), 623–642 (2003a)MathSciNetMATHCrossRefGoogle Scholar
  22. P.B. Bochev, J.J. Hu, A.C. Robinson, R.S. Tuminaro, Towards Robust 3D z-pinch Simulations: Discretization and Fast Solvers for Magnetic Diffusion in Heterogeneous Conductors. Electron Trans Num Anal 15, 186–210 (2003b)MathSciNetMATHGoogle Scholar
  23. M.B. Boslough, J.A. Ang, L.C. Chhabildas, W.D. Reinhart, C.A. Hall, B.G. Cour-Palais, E.L. Christiansen, J.L. Crews, Hypervelocity testing of advanced shielding concepts for spacecraft against impacts to 10 km/s. Int. J. Impact Eng. 14, 95–106 (1993)CrossRefGoogle Scholar
  24. R.M. Brannon, L.C. Chhabildas, Experimental and numerical investigation of shock-induced full vaporization of zinc. Int. J. Impact Eng. 17, 109–120 (1995)CrossRefGoogle Scholar
  25. J.L. Brown, G. Ravichandran, W.D. Reinhart, W.M. Trott, High-pressure Hugoniot measurements using converging shocks. J. Appl. Phys. 109, 093520 (2011)CrossRefGoogle Scholar
  26. T.A. Brunner, C.J. Garasi, T.A. Haill, T.A. Mehlhorn, K. Cochrane, A.C. Robinson, R.M. Summers, ALEGRA-HEDP: version 46. Sandia National Laboratories Report SAND2005-5996 (Sandia National Laboratory, Albuquerque, NM, 2005)Google Scholar
  27. K.G. Budge, J.S. Perry, RHALE: a MMALE shock physics code written in C++. Int. J. Impact Eng. 14, 107–120 (1993)CrossRefGoogle Scholar
  28. P.J. Chen, J.E. Kennedy, Chemical kinetic and curvature effects on shock-wave evolution in shocked explosives, in Proceedings of the 6th International Detonation Symposium Office of Naval Research Report ONR ACR-221:379-388, ed. by S.J. Jacobs, D.J. Edwards (Office of Naval Research, San Diego, CA, 1976)Google Scholar
  29. L.C. Chhabildas, H.M. Gilder, Thermal coefficient of expansion of an activated vacancy in zinc from high pressure self-diffusion experiments. Phys. Rev. B 5, 2135–2144 (1972)CrossRefGoogle Scholar
  30. L.C. Chhabildas, A.L. Ruoff, The transition of sulfur to a conducting phase. J. Chem. Phys. 66(3), 983–985 (1977)CrossRefGoogle Scholar
  31. L.C. Chhabildas, J.R. Asay, Rise-time measurements of shock transitions in aluminum, copper, steel. J. Appl. Phys. 50(4), 2749–2756 (1979)CrossRefGoogle Scholar
  32. L.C. Chhabildas, J.W. Swegle, Dynamic pressure-shear loading of materials using anisotropic crystals. J. Appl. Phys. 51(9), 4799–4807 (1980)CrossRefGoogle Scholar
  33. L.C. Chhabildas, D.E. Grady, Dynamic material response of quartz at high strain rates, in High Pressure Science and Technology, Vol 3. Proceedings of the 9th AIRAPT International High Pressure Conference, ed. by C. Homan, R.K. MacCrone, E. Whalley (AIRAPT, Albany, NY, 1984), pp. 147–150Google Scholar
  34. L.C. Chhabildas, J.M. Miller, Release-Adiabat Measurements in Crystalline Quartz. Sandia National Laboratories Report SAND85-1092 (Sandia National Laboratory, Albuquerque, NM, 1985)Google Scholar
  35. L.C. Chhabildas, L.M. Barker, Dynamic quasi-isentropic compression of tungsten, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 111–114Google Scholar
  36. L.C. Chhabildas, J.R. Asay, L.M. Barker, Shear Strength of Tungsten Under Shock- and Quasi-Isentropic Loading to 250 GPa. Sandia National Laboratories Report SAND88-0306 (Sandia National Laboratory, Albuquerque, NM, 1988)Google Scholar
  37. L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, G.I. Kerley, Sandia’s New Hypervelocity Launcher, HVL. Sandia National Laboratories Report SAND91-0657 (Sandia National Laboratory, Albuquerque, NM, 1991)Google Scholar
  38. L.C. Chhabildas, J.R. Asay, Dynamic yield strength and spall strength measurements under quasi-isentropic loading, in Shock-Wave and High-Strain-Rate Phenomena in Materials, ed. by M.A. Meyers et al. (Marcel Dekker, New York, NY, 1992), pp. 947–955Google Scholar
  39. L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, G.I. Kerley, J.E. Dunn, Launch capabilities to over 10 km/s, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 1025–1031Google Scholar
  40. L.C. Chhabildas, E.S. Hertel, S.A. Hill, Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s. Int. J. Impact Eng. 14, 133–144 (1993a)CrossRefGoogle Scholar
  41. L.C. Chhabildas, J.E. Dunn, W.D. Reinhart, J.M. Miller, An impact technique to accelerate flyer plates to velocities over 12 km/s. Int. J. Impact Eng. 14, 121–132 (1993b)CrossRefGoogle Scholar
  42. L.C. Chhabildas, T.G. Trucano, W.D. Reinhart, C.A. Hall, Chunk Projectile Launch Using the Sandia Hypervelocity Launcher Facility. Sandia National Laboratories Report SAND94-1273 (Sandia National Laboratory, Albuquerque, NM, 1994)CrossRefGoogle Scholar
  43. L.C. Chhabildas, L.N. Kmetyk, W.D. Reinhart, C.A. Hall, Enhanced hypervelocity launcher: capabilities to 16 km/s. Int. J. Impact Eng. 17, 183–191 (1995)CrossRefGoogle Scholar
  44. L.C. Chhabildas, M.D. Furnish, D.E. Grady, Impact of alumina rods – a computational and experimental study. J. Phys. IV (Colloque) 7(C3), 137–143 (1997)Google Scholar
  45. L.C. Chhabildas, W.D. Reinhart, Intermediate strain-rate loading experiments – technique and applications to ceramics, in Proceedings of the 15th US Army Symposium on Solid Mechanics, ed. by S.C. Chou, K.S. Iyer (Batelle, Columbus, OH, 1999), pp. 233–240Google Scholar
  46. L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, J.L. Brown, Shock-induced vaporization in metals. Int. J. Impact Eng. 33(1-12), 158–168 (2006)CrossRefGoogle Scholar
  47. J. Clerouin, P. Renaudin, V. Recoules et al., Equation of state and electrical conductivity of strongly correlated aluminum and copper plasmas. Contrib. Plasma Phys. 43(5-6), 269–272 (2003)CrossRefGoogle Scholar
  48. J. Clerouin, P. Renaudin, Y. Laudernet et al., Electrical conductivity and equation of state study of warm dense copper: measurements and quantum molecular dynamics calculations. Phys. Rev. B 71, 064203 (2005)CrossRefGoogle Scholar
  49. K. Cochrane, M. Desjarlais, T. Haill, J. Lawrence, M. Knudson, G. Dunham, Aluminum Equation of State Validation and Verification for the ALEGRA HEDP Simulation Code. Sandia National Laboratories Report SAND2006-1739 (Sandia National Laboratory, Albuquerque, NM, 2006)CrossRefGoogle Scholar
  50. D.M. Dattelbaum, S.A. Sheffield, D.B. Stahl, A.M. Dattelbaum, W.M. Trott, Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane, in Proceedings of the 14th international symposium on detonation, Office of Naval Research Report ONR 351-10-185, Office of Naval Research, ed. by S. Peiris, C. Boswell, B. Asay (Office of Naval Research, Coeur d’Alene, ID, 2010), pp. 611–621Google Scholar
  51. L. Davison, M.E. Kipp, Calculation of spall damage accumulation in ductile metals, in High Velocity Deformation of Solids, ed. by K. Kawata, J. Shioiri (Springer-Verlag, Berlin, 1978), pp. 163–175Google Scholar
  52. J.-P. Davis, C. Deeney et al., Magnetically driven isentropic compression to multi-megabar pressures using shaped current pulses on the Z accelerator. Phys. Plas. 12, 056310 (2005)CrossRefGoogle Scholar
  53. J.-P. Davis, Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys. 99(10), 103512 (2006)CrossRefGoogle Scholar
  54. L.W. Davison, J.N. Johnson, Elastoplastic Wave Propagation and Spallation in Beryllium: A Review. Sandia National Laboratories Report SC-TM-70-634 (Sandia National Laboratory, Albuquerque, NM, 1970)Google Scholar
  55. L.W. Davison, A.L. Stevens, Thermomechanical constitution of spalling elastic bodies. J. Appl. Phys. 44(2), 668–674 (1973)CrossRefGoogle Scholar
  56. L.W. Davison, A.L. Stevens, M.E. Kipp, Theory of spall damage accumulation in ductile metals. J. Mech. Phys. Solids 25, 11–28 (1977)CrossRefGoogle Scholar
  57. L.W. Davison, Numerical modeling of dynamic material response, in Shock Waves in Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 181–186Google Scholar
  58. L.W. Davison, Fundamentals of Shock Wave Propagation in Solids (Springer, Berlin, 2008)MATHGoogle Scholar
  59. M.P. Desjarlais, Practical improvements to the Lee-More conductivity near the metal-insulator transition. Contrib. Plasma Phys. 41(2-3), 267–270 (2001)CrossRefGoogle Scholar
  60. M.P. Desjarlais, J.D. Kress, L.A. Collins, Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E 66, 025401 (2002)CrossRefGoogle Scholar
  61. G. Dimonte, D.L. Youngs, A. Dimits et al., A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16(5), 1668–1693 (2004)MATHCrossRefGoogle Scholar
  62. J.W. Forbes, The history of the APS Shock compression of condensed matter Topical Group, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 11–19Google Scholar
  63. G.R. Fowles, Shock wave compression of hardened and annealed 2024 aluminum. J. Appl. Phys. 32, 1475–1487 (1961)CrossRefGoogle Scholar
  64. A.M. Frank, W.M. Trott, Investigation of thin laser-driven flyer plates using streak imaging and stop motion microphotography, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, W.C. Tao, vol. 370 (AIP, College Park, MD, 1996), pp. 1209–1212Google Scholar
  65. M.D. Furnish, “Recent advances in methods for measuring the dynamic response of geological materials to 100 GPa. Int. J. Impact Eng. 14(1-4), 267–277 (1993)CrossRefGoogle Scholar
  66. M.D. Furnish, M.B. Boslough, G.T. Gray III, J.L. Remo, Dynamical properties measurements of asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations. Int. J. Impact Eng. 17, 341–352 (1995)CrossRefGoogle Scholar
  67. M.D. Furnish, J.L. Remo, Ice issues, Porosity, and Snow Experiments for Dynamic NEO and Comet Modeling Near-Earth Objects: United Nations International Conference, vol. 822 (New York Academy Sciences, New York, NY, 1997), pp. 566–582Google Scholar
  68. M.D. Furnish, R.J. Lawrence, C.A. Hall, J.R. Asay, D.L. Barker, G.A. Mize, E.A. Marsh, M.A. Bernard, Radiation-driven shock and debris propagation down a partitioned pipe. Int. J. Impact Eng. 26, 189–200 (2001)CrossRefGoogle Scholar
  69. M.D. Furnish, J. Robbins, W.M. Trott, L.C. Chhabildas, R.J. Lawrence, S.T. Montgomery, Multidimensional validation impact tests on PZT 95/5 and ALOX, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 205–208Google Scholar
  70. M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, W.M. Trott, T.J. Vogler, Determination and interpretation of statistics of spatially resolved waveforms in spalled tantalum for 7 to 13 GPa. Int. J. Plast. 25, 587–602 (2009)MATHCrossRefGoogle Scholar
  71. D.E. Grady, Fragment size prediction in dynamic fragmentation, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 456–459Google Scholar
  72. D.E. Grady, M.D. Furnish, Shock- and Release-Wave Properties of MJ-2 Grout. Sandia National Laboratories Report SAND88-1642 (Sandia National Laboratory, Albuquerque, NM, 1988)Google Scholar
  73. D.E. Grady, M.D. Furnish, Hugoniot and release properties of a water-saturated high-silica-content grout, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 621–624Google Scholar
  74. D.E. Grady, Length scales and size distributions in dynamic fragmentation. Int. J. Fracture 163, 85–99 (2010)MATHCrossRefGoogle Scholar
  75. R.A. Graham, Impact Physics. Sandia National Laboratories Report SCR-59 (Sandia National Laboratory, Albuquerque, NM, 1958)Google Scholar
  76. T.A. Haill, C.J. Garasi, A.C. Robinson, ALEGRA-MHD: Version 40. Sandia National Laboratories Report SAND2003-4074 (Sandia National Laboratory, Albuquerque, NM, 2003)Google Scholar
  77. T.A. Haill, T.A. Mehlhorn, J.R. Asay et al., A Feasibility Study for a Fragment-Producing Chemical Electrical Launcher. Digest of Technical Papers. IEEE Pulsed Power and Plasma Sciences Conference (IEEE, Berlin, 2007), pp. 1753–1756Google Scholar
  78. T.A. Haill, C.S. Alexander, J.R. Asay, Simulation and analysis of Magnetically-Applied Pressure-Shear (MAPS) experiments. In Digest of Technical Papers. IEEE Pulsed Power Conference (IEEE, Berlin, 2011), pp. 1093–1098Google Scholar
  79. T.A. Haill, T.R. Mattsson, S. Root et al., Mesoscale simulation of shocked poly-(4-methyl-1-Pentene) (PMP) foams, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 913–916Google Scholar
  80. T.A. Haill, T.R. Mattsson, S. Root et al., Mesoscale simulation of mixed equations of state with application to shocked platinum-doped PMP foams. Proceedings of the 12th hypervelocity impact symposium. Proc Eng 58, 309–319 (2013)CrossRefGoogle Scholar
  81. C.A. Hall, L.C. Chhabildas, W.D. Reinhart, Shock Hugoniot and release in concrete with different aggregate sizes from 3 to 23 GPa. Int. J. Impact Eng. 23, 341–351 (1999)CrossRefGoogle Scholar
  82. C.A. Hall, J.R. Asay, W.M. Trott, M. Knudson, K.J. Fleming, M.A. Bernard, B.F. Clark, A. Hauer, G. Kyrala, Aluminum Hugoniot measurements on the Sandia Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 1171–1174Google Scholar
  83. C.A. Hall, M.D. Knudson, J.R. Asay et al., High velocity flyer plate launch capability on the Sandia Z accelerator. Int. J. Impact Eng. 26, 275–287 (2001)CrossRefGoogle Scholar
  84. D.L. Hanson, J.R. Asay, C.A. Hall, M.D. Knudson, J.E. Bailey, K.J. Fleming, R.R. Johnston, B.F. Clark, M.A. Bernard, W.W. Anderson, G. Hassall, S.D. Rothman, Progress on deuterium measurements on Z, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 1175–1178Google Scholar
  85. D.R. Hardesty, P.C. Lysne, Shock Initiation and Detonation Properties of Homogeneous Explosives. Sandia National Laboratories Report SLA-74-0165 (Sandia National Laboratory, Albuquerque, NM, 1974)Google Scholar
  86. D.R. Hardesty, J.E. Kennedy, Thermochemical estimation of explosive energy output. Combust. Flame 43, 45–59 (1977)CrossRefGoogle Scholar
  87. D.B. Hayes, Wave propagation in a condensed medium with N transforming phases: application to solid-I-solid-II-liquid bismuth. J. Appl. Phys. 46, 3438–3443 (1975)CrossRefGoogle Scholar
  88. D.B. Hayes, D.E. Mitchell, A constitutive equation for the shock response of porous hexanitrostilbene (HNS) explosive. Symposium on High Pressures, Commissariat a l’Energie Atomique, Paris, France, August 1978, 22 (1978)Google Scholar
  89. D.B. Hayes, D.E. Grady, A thermal-viscous model for heterogeneous yielding in aluminum, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by W.J. Nellis, L. Seaman, R.A. Graham, vol. 78 (AIP, College Park, MD, 1982), pp. 412–415Google Scholar
  90. D.B. Hayes, C.A. Hall, J.R. Asay, M.D. Knudson, Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys. 96(10), 5520–5527 (2004)CrossRefGoogle Scholar
  91. F. Herlach, J.E. Kennedy, The dynamics of imploding liners in magnetic flux compression experiments. J. Phys. D Appl. Phys. 6, 661–676 (1973)CrossRefGoogle Scholar
  92. G.R. Hough, D.M. Gustafson, R.E. Thursby, Enhanced holographic recording capabilities for dynamic applications, in Proceedings of the SPIE Ultrahigh and High Speed Photography, Photons, and Velocimetry 1989 Conference, ed. by P.A. Jaanimagi, vol. 1155 (SPIE, Bellingham, WA, 1990), pp. 181–188Google Scholar
  93. J.N. Johnson, Basic Theory of Irreversible Thermodynamics with Application to the Anelastic Solids Washington State University Internal Report No 01-67 (Washington State University, Pullman, WA, 1967)Google Scholar
  94. J.N. Johnson, W. Band, Investigation of precursor decay in iron by the artificial viscosity method. J. Appl. Phys. 38(4), 1578–1585 (1967)CrossRefGoogle Scholar
  95. J.N. Johnson, A Theory of Rate-Dependent Behavior for Porous Solids: Steady-Propagating Compaction Wave Profiles. Sandia National Laboratories Report SC-RR-68-151 (Sandia National Laboratory, Albuquerque, NM, 1968)Google Scholar
  96. J.N. Johnson, Constitutive relation for rate-dependent plastic flow in polycrystalline metals. J. Appl. Phys. 40(5), 2287–2293 (1969)CrossRefGoogle Scholar
  97. J.N. Johnson, L.M. Barker, Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40(11), 4321–4334 (1969)CrossRefGoogle Scholar
  98. J.N. Johnson, O.E. Jones, T.E. Michaels, Dislocation dynamics and single-crystal constitutive relations: shock-wave propagation and precursor decay. J. Appl. Phys. 41(6), 2330–2339 (1970)CrossRefGoogle Scholar
  99. J.N. Johnson, J.R. Asay, D.B. Hayes, Equations of state and shock-induced transformations in solid-I, solid-II, liquid bismuth. J. Phys. Chem. Solids 35, 501–515 (1974)CrossRefGoogle Scholar
  100. J.N. Johnson, Micromechanical considerations in shock compression of solids, in High-Pressure Shock Compression of Solids, ed. by J.R. Asay, M. Shahinpoor (Springer, New York, NY, 1993), pp. 222–240Google Scholar
  101. B. Jones, C.J. Garasi, D.J. Ampleford et al., Measurement and modeling of the implosion of wire arrays with seeded instabilities. Phys. Plasmas 13, 056313 (2006)CrossRefGoogle Scholar
  102. O.E. Jones, F.W. Neilson, W.B. Benedick, Dynamic yield behavior of explosively loaded metals determined by a quartz transducer technique. J. Appl. Phys. 33(11), 3224–3232 (1962)CrossRefGoogle Scholar
  103. O.E. Jones, Metal response under explosive loading, in Behavior and Utilization of Explosives in Engineering Design, Proceedings12th Annual Symposium New Mexico Section of American Society of Mechanical Engineers, ed. by L.W. Davison et al. (New Mexico Section of American Society of Mechanical Engineers, New Mexico, 1972), pp. 125–148Google Scholar
  104. J.E. Kennedy, Quartz gauge study of upstream reaction in a shocked explosive, in Proceedings of the 5th International Detonation Symposium, Pasadena, CA, Office of Naval Research Report ONR ACR-184, ed. by S.J. Jacobs, R. Roberts (Office of Naval Research, San Diego, CA, 1970), pp. 435–445Google Scholar
  105. J.E. Kennedy, Gurney Energy of Explosives: Estimation of the Velocity and Impulse Imparted to Driven Metal Sandia Report SC-RR-70-790 (Sandia National Laboratory, Albuquerque, NM, 1971)Google Scholar
  106. J.E. Kennedy, Explosive output for driving metal, in Behavior and Utilization of Explosives in Engineering Design, Proceedings 12th Annual Symposium New Mexico Section of American Society of Mechanical Engineers, ed. by L.W. Davison et al. (New Mexico Section of American Society of Mechanical Engineers, New Mexico, 1972), pp. 109–124Google Scholar
  107. J.E. Kennedy, Pressure Field in a Shock-Compressed High Explosive. Proceedings Fourteenth Symposium (International) on Combustion (The Combustion Institute) [Also, Sandia National Laboratories Report SC-DC-721254], Vol 14 (Sandia National Laboratory, Albuquerque, NM, 1973), pp. 1251–1258Google Scholar
  108. J.E. Kennedy, A.C. Schwarz, Detonation Transfer by Flyer Plate Impact. Proceedings 8th Symposium on Explosives and Pyrotechnics, Los Angeles, CA, February 5, 1974. [Also, Sandia National Laboratories Report SLA 74-5073, Albuquerque, NM (Franklin Institute, Philadelphia, PA, 1974)Google Scholar
  109. K.Y. Kim, L.C. Chhabildas, A.L. Ruoff, Isothermal equations of state for lithium fluoride. J. Appl. Phys. 47(7), 2862–2866 (1976)CrossRefGoogle Scholar
  110. M.E. Kipp, A.L. Stevens, Numerical Integration of a Spall-Damage Viscoplastic Constitutive Model in a One-Dimensional Wave Propagation Code. Sandia National Laboratories Report SAND76-0061 (Sandia National Laboratory, Albuquerque, NM, 1976)Google Scholar
  111. M.E. Kipp, J.W. Nunziato, Numerical simulation of detonation failure in nitromethane, in Proceedings of the 7th International Detonation Symposium, Annapolis, Maryland, Navy Report NSWC MP 82-334, ed. by J.M. Short, S.J. Jacobs (NSWC, Annapolis, MD, 1981), pp. 608–619Google Scholar
  112. M.E. Kipp, H.J. Melosh, A numerical study of the giant impact origin of the moon: the first half hour. Lunar Planet Sci. 18, 491–492 (1987)Google Scholar
  113. M.E. Kipp, R.R. Martinez, E.S. Hertel, E.L. Baker, B.E. Fuchs, C.L. Chin, Experiments and simulations of spinning shaped charges with fluted liners, in 18th International Symposium on Ballistics, ed. by W.G. Reinecke, vol. 1 (Technomic Publishing Co, Lancaster, PA, 1999a), pp. 499–506Google Scholar
  114. M.E. Kipp, R.R. Martinez, R.A. Benham, S.H. Fischer, Explosive Containment Chamber Vulnerability to Chemical Munition Fragment Impact. Sandia National Laboratories Report SAND99-0189 (Sandia National Laboratory, Albuquerque, NM, 1999b)Google Scholar
  115. M.E. Kipp, R.R. Martinez, Assessment of Chemical Munition Fragment Impact in an Explosive Containment Chamber. Sandia National Laboratories Report SAND2000-0327 (Sandia National Laboratory, Albuquerque, NM, 2000)Google Scholar
  116. M.D. Knudson, R.W. Lemke, D.B. Hayes, C.A. Hall, C. Deeney, J.R. Asay, Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys. 94, 4420–4431 (2003)CrossRefGoogle Scholar
  117. C.H. Konrad, L.C. Chhabildas, M.B. Boslough, A.J. Piekutowski, K.L. Poormon, S.A. Mullin, D.L. Littlefield, Dependence of debris cloud formation on projectile shape, in High-Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 309 (AIP, College Park, MD, 1994), pp. 1845–1848CrossRefGoogle Scholar
  118. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)CrossRefGoogle Scholar
  119. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal – amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–14269 (1994)CrossRefGoogle Scholar
  120. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)CrossRefGoogle Scholar
  121. J.M.D. Lane, G.S. Grest, A.P. Thompson et al., Shock compression of hydrocarbon polymer foam using molecular dynamics, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 1435–1438Google Scholar
  122. R.J. Lawrence, W.M. Trott, Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher. Int. J. Impact Eng. 14, 439–449 (1993)CrossRefGoogle Scholar
  123. R.J. Lawrence, J.R. Asay, T.G. Trucano, C. Hall, Analysis of radiation-driven explosive flyers, in Shock Compression of Condensed Matter, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson. AIP Conference Proceedings, vol. 505 (AIP, College Park, MD, 2000), pp. 1079–1082Google Scholar
  124. R.J. Lawrence, M.D. Furnish, T.A. Haill, T.G. Trucano, T.A. Mehlhorn, K.G. Budge, C.A. Hall, J.R. Asay, K.R. Cochrane, J.J. MacFarlane, Radiation-Driven Dynamic Target Response for Dissimilar Material Jetting and for Debris Effects in Partitioned Pipes. Sandia National Laboratories Report SAND2001-1688C (Sandia National Laboratory, Albuquerque, NM, 2001) [Presented at III Khariton’s topical scientific readings international conference, Sarov, Russia, February 2001]Google Scholar
  125. R.J. Lawrence, T.A. Mehlhorn, T.A. Haill et al., Analysis of radiation-driven jetting experiments on Nova and Z, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 291–294Google Scholar
  126. R.J. Lawrence, J.R. Asay, Y.M. Gupta, C.J. Bakeman, T.A. Haill, Fragment Producing Chemical-Electrical Launcher (FP-CEL): Feasibility Study (Part I). Sandia National Laboratories Report SAND2008-7999 (Sandia National Laboratory, Albuquerque, NM, 2009a)Google Scholar
  127. R.J. Lawrence, T.A. Haill, B.L. Freeman, Y.M. Gupta, Fragment Producing Chemical-Electrical Launcher (FP-CEL): Numerical Analysis (Part II). Sandia National Laboratories Report SAND2008-8000 (Sandia National Laboratory, Albuquerque, NM, 2009b)Google Scholar
  128. Y.T. Lee, R.M. More, An electron conductivity model for dense plasmas. Phys. Fluids 27(5), 1273–1286 (1984)MATHCrossRefGoogle Scholar
  129. R.W. Lemke, M.D. Knudson, C.A. Hall, T.A. Haill, M.P. Desjarlais et al., Characterization of magnetically accelerated flyer plates. Phys. Plasmas 10, 1092–1099 (2003a)CrossRefGoogle Scholar
  130. R.W. Lemke, M.D. Knudson, A.C. Robinson et al., Self-consistent, two-dimensional magneto-hydrodynamic simulations of magnetically driven flyer plates. Phys. Plasmas 10(5), 1867–1874 (2003b)CrossRefGoogle Scholar
  131. R.W. Lemke, M.D. Knudson, D.E. Bliss, K. Cochrane, J.-P. Davis, A.A. Giunta, H.C. Harjes, S.A. Slutz, Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments. J. Appl. Phys. 98, 073530 (2005)CrossRefGoogle Scholar
  132. R.W. Lemke, D.B. Sinars, E.M. Waisman, M.E. Cuneo et al., Effects of mass ablation on the scaling of x-ray power with current in wire-array z pinches. Phys. Rev. Lett. 102, 025005 (2009)CrossRefGoogle Scholar
  133. R.W. Lemke, M.D. Knudson, J.-P. Davis, Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. J. Impact Eng. 38, 480–485 (2011)CrossRefGoogle Scholar
  134. R.W. Lemke, M.R. Martin, R.D. McBride et al., Determination of pressure and density of shocklessly compressed beryllium from x-ray radiography of a magnetically driven cylindrical liner implosion, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 473–476Google Scholar
  135. J. Lipkin, M.E. Kipp, Wave structure measurement and analysis in hypervelocity impact experiments. J. Appl. Phys. 47(5), 1979–1986 (1976)CrossRefGoogle Scholar
  136. J. Lipkin, J.R. Asay, Reshock and release of shock-compressed 6061-T6 aluminum. J. Appl. Phys. 48, 182–189 (1977)CrossRefGoogle Scholar
  137. R.J. Magyar, S.S. Root, T.A. Haill et al., Equations of state of mixtures: density functional theory (DFT): simulations and experiments on Sandia’s Z machine, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 1195–1198Google Scholar
  138. M.R. Martin, R.W. Lemke, R.D. McBride et al., Analysis of cylindrical ramp compression experiment with radiography based surface fitting method, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler, vol. 1426 (AIP, College Park, MD, 2012), pp. 357–360Google Scholar
  139. T.R. Mattsson, J.M.D. Lane, K.R. Cochrane, M.P. Desjarlais, A.P. Thompson, F. Pierce, G.S. Grest, First principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 81, 054103 (2010)CrossRefGoogle Scholar
  140. S. Mazevet, M.P. Desjarlais, L.A. Collins et al., Simulations of the optical properties of warm dense aluminum. Phys. Rev. E 71, 016409 (2005)CrossRefGoogle Scholar
  141. J.M. McAfee, B.W. Asay et al., Deflagration to detonation in granular HMX, in Proceedings of the Ninth International Detonation Symposium, Office of Naval Research Report ONR 113291-7, ed. by J.M. Short, E.L. Lee (Office of Naval Research, San Diego, CA, 1991), pp. 265–279Google Scholar
  142. J.M. McGlaun, S.L. Thompson, M.G. Elrick, CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)CrossRefGoogle Scholar
  143. J.M. Miller, L.C. Chhabildas, Low Temperature Experimental Capability for Use with Gas Guns. Sandia National Laboratories Report SAND85-0303 (Sandia National Laboratory, Albuquerque, NM, 1985)Google Scholar
  144. S.A. Mullin, D.L. Littlefield, L.C. Chhabildas, A.J. Piekutowski, Computational simulations of experimental impact data obtained at 7 to 11 km/s with aluminum and zinc, in High-Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 309 (AIP, College Park, MD, 1994), pp. 1817–1820CrossRefGoogle Scholar
  145. J.W. Nunziato, J.E. Kennedy, Shock-wave evolution in a chemically reacting solid. J. Mech. Phys. Solids 24, 107–124 (1976)MATHCrossRefGoogle Scholar
  146. J.W. Nunziato, J.E. Kennedy, D.E. Amos, The thermal ignition time for homogeneous explosives involving two parallel reactions. Combust. Flame 43, 265–268 (1977)CrossRefGoogle Scholar
  147. J.W. Nunziato, M.E. Kipp, Numerical Studies of Initiation, Detonation, and Detonation Failure in Nitromethane. Sandia National Laboratories Report No. SAND81-0669 (Sandia National Laboratory, Albuquerque, NM, 1983)Google Scholar
  148. B.V. Oliver, Non-ideal MHD Plasma Regimes and Their Relevance to the Study of Dynamic z-Pinches. Technical Report MRC/ABQ-R-1947 Mission Research Corporation (Mission Research Corporation, Albuquerque, NM, 1999)Google Scholar
  149. D.L. Paisley, Laser-driven miniature flyer plates for shock initiation of secondary explosives, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, Amsterdam, 1990), pp. 733–736Google Scholar
  150. W.D. Reinhart, L.C. Chhabildas, W.M. Trott, D.P. Dandekar, Investigating multi-dimensional effects in single crystal sapphire, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 791–794Google Scholar
  151. A.M. Renlund, W.M. Trott, Spectrographic studies of shocked and detonating explosives, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, New York, NY, 1988), pp. 547–552Google Scholar
  152. A.M. Renlund, W.M. Trott, Raman spectroscopic studies of shock-compressed nitromethane-d3, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, New York, NY, 1990), pp. 875–878Google Scholar
  153. A.C. Robinson, T.A. Brunner, S.K. Carroll, R.R. Drake et al., ALEGRA: an arbitrary lagrangian-eulerian multimaterial, multiphysics code, in Proceedings of the 46th AIAA Aerospace Science Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA 2008–1235, ed. by IUTAM (AIAA, Huntsville, AL, 2008)Google Scholar
  154. A.C. Robinson, J.H.J. Niederhaus, V.G. Weirs, E. Love, Arbitrary Lagrangian–Eulerian 3D ideal MHD algorithms. Int. J. Num. Meth. Fluids 65, 1438–1450 (2011)MathSciNetMATHCrossRefGoogle Scholar
  155. S. Root, T.A. Haill, J.M.D. Lane, A.P. Thompson, G.S. Grest, D.G. Schroen, T.R. Mattsson, Shock compression of hydrocarbon foam to 400 GPa: Experiments, mesoscale modeling, and atomistic simulations. J. Appl. Phys. 114, 103502 (2013)CrossRefGoogle Scholar
  156. S.E. Rosenthal, M.P. Desjarlais, Equation of state and electron transport effects in exploding wire evolution, in IEEE Pulsed Power Plasma Science, Digest of Technical Papers, ed. by R. Reinovsky, M. Newton, vol. 1 (IEEE, New York, NY, 2001), pp. 781–784Google Scholar
  157. A. Ruoff, L.C. Chhabildas, The sodium chloride primary pressure gauge. J. Appl. Phys. 47(11), 4867–4872 (1976)CrossRefGoogle Scholar
  158. G.S. Sarkisov, S.E. Rosenthal, K.R. Cochrane et al., Nanosecond electrical explosion of thin aluminum wires in a vacuum: experimental and computational investigations. Phys. Rev. E 71, 046404 (2005)CrossRefGoogle Scholar
  159. R.E. Setchell, Ramp-wave initiation of granular explosives. Combust. Flame 43, 255–264 (1981)CrossRefGoogle Scholar
  160. S.A. Sheffield, J.W. Rogers Jr., J.N. Castañeda, Velocity measurements of laser-driven flyers backed by high-impedance windows, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 541–545CrossRefGoogle Scholar
  161. R.B. Spielman, F. Long, T.H. Martin, J.W. Poukey, D.B. Seidel, W.A. Stygar, D.H. McDaniel, M.A. Mostrom, K.W. Struve, P. Corcoran, I. Smith, P. Spence, PBFA II-Z: a 20-MA driver for z-pinch experiments, in Digest of Technical Papers 10th IEEE International Pulsed Power Conference, ed. by W.L. Baker, G. Cooperstein (Elsevier, Amsterdam, 1995), pp. 396–404CrossRefGoogle Scholar
  162. R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, M.K. Matzen, D.H. McDaniel, T.J. Nash, J.L. Porter, T.W.L. Sanford, J.F. Seaman, W.A. Stygar, K.W. Struve, S.P. Breeze, J.S. McGurn, J.A. Torres, D.M. Zagar, T.L. Gilliland, D.O. Jobe, J.L. McKenney, R.C. Mock, M. Vargas, T. Wagoner, D.L. Peterson, PBFA Z: A 60-TW/5-MJ z-pinch driver, in Dense Z-Pinches, AIP Conference Proceedings, vol. 409 (AIP, College Park, MD, 1997), pp. 101–118CrossRefGoogle Scholar
  163. P.H. Stolz, B.V. Oliver, Growth rates of the m=0 mode for Bennett equilibria with varying radial density and temperature profiles. Phys. Plasmas 8(6), 3096–3098 (2001)CrossRefGoogle Scholar
  164. R.M. Summers, J.S. Peery, M.K. Wong, E.S. Hertel Jr., T.G. Trucano, L.C. Chhabildas, Recent progress in ALEGRA development and application to ballistic impacts. Int. J. Impact Eng. 20, 779–788 (1997)CrossRefGoogle Scholar
  165. H.J. Sutherland, J.E. Kennedy, Acoustic characterization of two unreacted explosives. J. Appl. Phys. 46(6), 2439–2444 (1975)CrossRefGoogle Scholar
  166. H.J. Sutherland, J.E. Kennedy, J.W. Nunziato, Behavior of the Longitudinal Acoustic Velocity in PBX-9404 During Thermal Decomposition. Sandia National Laboratories Report SAND 77-0577 (Sandia National Laboratory, Albuquerque, NM, 1977)CrossRefGoogle Scholar
  167. J.W. Swegle, L.C. Chhabildas, Technique for the generation of pressure-shear loading using anisotropic crystals, in Shock Waves and High Strain-Rate Phenomena in Metals, ed. by M. Meyers, L. Murr (Springer, New York, NY, 1981), pp. 401–415CrossRefGoogle Scholar
  168. J.W. Swegle, D.E. Grady, Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58(2), 692–701 (1985)CrossRefGoogle Scholar
  169. L.M. Taylor, D.P. Flanagan, PRONTO-3D: A Three-Dimensional Transient Solid Dynamics Program. Sandia National Laboratories Report SAND87-1912 (Sandia National Laboratory, Albuquerque, NM, 1989)Google Scholar
  170. W.M. Trott, A.M. Renlund, Pulsed-laser-excited Raman spectra of shock-compressed triaminotrinitrobenzene, in Proceedings of the 9th International Detonation Symposium, Office of Naval Research Report ONR 113291-7, ed. by J.M. Short, E.L. Lee (Office of Naval Research, San Diego, CA, 1989), pp. 153–161Google Scholar
  171. W.M. Trott, K.D. Meeks, Acceleration of thin foil targets using fiber-coupled optic pulses, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, J.N. Johnson, L.W. Davison (Elsevier, New York, NY, 1990a), pp. 997–1000Google Scholar
  172. W.M. Trott, K.D. Meeks, High-power Nd glass laser transmission through optical fibers and its use in acceleration of thin foil targets. J. Appl. Phys. 67, 3297–3301 (1990b)CrossRefGoogle Scholar
  173. W.M. Trott, Investigation of the dynamic behavior of laser-driven flyers, in High-Pressure Science and Technology, AIP Conference Proceedings, ed. by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross, vol. 309 (AIP, College Park, MD, 1994), pp. 1655–1658CrossRefGoogle Scholar
  174. W.M. Trott, J.N. Castañeda, J.J. O’Hare, M.D. Knudson, L.C. Chhabildas, M.R. Baer, J.R. Asay, Examination of the mesoscopic scale response of shock compressed heterogeneous materials using a line-imaging velocity interferometer, in Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, ed. by K.P. Staudhammer, L.E. Murr, M.A. Meyers (Elsevier, New York, NY, 2001), pp. 647–654Google Scholar
  175. W.M. Trott, R.E. Setchell, A.V. Farnsworth Jr., Development of laser-driven flyer techniques for equation-of-state studies of microscale materials, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 505 (AIP, College Park, MD, 2002), pp. 1347–1350Google Scholar
  176. W.M. Trott, M.R. Baer, J.N. Castañeda, A.S. Tappan, J.N. Stuecker, J. Cesarano, Shock-induced reaction in a nitromethane-impregnated geometrically regular sample configuration, in Proceedings of the 13th International Detonation Symposium, Office of Naval Research Report ONR Report 351-07-01:308-318, ed. by S. Peiris, R.M. Doherty (Office of Naval Research, San Diego, CA, 2006)Google Scholar
  177. W.M. Trott, M.R. Baer, J.N. Castañeda, L.C. Chhabildas, J.R. Asay, Investigation of the mesoscopic scale response of low-density pressings of granular sugar under impact. J. Appl. Phys. 101(2), 024917 (2007)CrossRefGoogle Scholar
  178. T.G. Trucano, K.G. Budge, R.J. Lawrence et al., Analysis of z Pinch Shock Wave Experiments. Sandia National Laboratories Report SAND99-1255 (Sandia National Laboratory, Albuquerque, NM, 1999)Google Scholar
  179. T.J. Tucker, J.E. Kennedy, D.L. Allensworth, Secondary explosive spark detonators, in Proceedings of the 7th Symposium on Explosives and Pyrotechnics, ed. by IUTAM (Franklin Institute, Philadelphia, PA, 1971) [Also Sandia National Laboratories Report SC-R-713486. Sandia National Laboratory, Albuquerque, NM]Google Scholar
  180. T.J. Vogler, T.F. Thornhill, W.D. Reinhart, L.C. Chhabildas, D.E. Grady, L.V. Wilson, O. Hurricane, A. Woo, Fragmentation of materials in expanding tube experiments. Int. J. Impact Eng. 29, 735–746 (2003)CrossRefGoogle Scholar
  181. T.J. Vogler, W.M. Trott, W.D. Reinhart, C.S. Alexander, M.D. Furnish, M.D. Knudson, L.C. Chhabildas, Using the line-VISAR to study multi-dimensional and meso-scale impact phenomena. Int. J. Impact Eng. 35, 1844–1852 (2008)CrossRefGoogle Scholar
  182. M.C. Wanke, A.D. Grine, M.A. Mangan, L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, C.S. Alexander, J.L. Brown, W.G. Breiland, E.A. Shaner, P.A. Miller, Advanced Diagnostics for Impact-Flash Spectroscopy on Light-Gas Guns. Sandia National Laboratories Report SAND2007-0835 (Sandia National Laboratory, Albuquerque, NM, 2007)Google Scholar
  183. J.M. Winey, J.N. Johnson, Y.M. Gupta, Unloading and reloading response of aluminum single crystals: time-dependent anisotropic material description. J. Appl. Phys. 112, 093509 (2012)CrossRefGoogle Scholar
  184. J.L. Wise, L.C. Chhabildas, Laser interferometer measurements of refractive index in shock-compressed materials, in Shock Waves in Condensed Matter, ed. by Y.M. Gupta (Plenum, New York, NY, 1986), pp. 441–454CrossRefGoogle Scholar
  185. E.P. Yu, B.V. Oliver, D.B. Sinars et al., Steady-state radiation ablation in the wire-array Z pinch. Phys. Plasmas 14, 022705 (2007)CrossRefGoogle Scholar
  186. E.P. Yu, M.E. Cuneo, M.P. Desjarlais et al., Three-dimensional effects in the wire array z pinch. Phys. Plasmas 15, 056301 (2008)CrossRefGoogle Scholar
  187. S. Zhuang, G. Ravichandran, D.E. Grady, An experimental investigation of shock wave propagation in periodically layered composites. J. Mech. Phys. Solids 51, 245–265 (2003)CrossRefGoogle Scholar

Copyright information

© Jointly by Sandia Corporation and the Authors 2017

Authors and Affiliations

  • James R. Asay
    • 1
  • Lalit C. Chhabildas
    • 1
  • R. Jeffery Lawrence
    • 1
  • Mary Ann Sweeney
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations