Advertisement

Chapter 7 The 2000s: A New Millennium

  • James R. Asay
  • Lalit C. Chhabildas
  • R. Jeffery Lawrence
  • Mary Ann Sweeney
Chapter
  • 540 Downloads
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

After the turn of the century, dramatic changes occurred in experimental and theoretical shock wave research at Sandia. In the 1950s and 1960s, computational capabilities to design and interpret shock wave experiments were extremely limited. Use of slide rules and small desktop calculators was common. In the 1950s instruments to measure the fine details of shock compression and dynamic material response were limited. In those early decades, the innovation and intuition of experimentalists and modelers were critical in advancing shock wave research in spite of these constraints. By the late 1960s, dynamic phenomenological models to describe the shock compression of complex materials such as composites and porous materials were beginning to be established. The pioneering loading and diagnostic technology developed in the 1960s was instrumental in advancing knowledge in the later decades. This was especially true for high-pressure applications until the mid-1970s, when time-resolved gauges became available for routine use at Sandia. Bob Graham and his team concentrated on developing the piezoelectric gauge, which is also known as the quartz gauge (Graham 1961a, b; Graham 1975; Neilson and Benedick 1960; Neilson et al. 1962; Graham and Ingram 1968; Graham and Reed 1978). Meanwhile, Lynn Barker and his team concentrated on developing optical interferometric gauges and, in particular, the velocity interferometer system for any reflector (or VISAR), which grew out of a wide-angle version of the Michelson interferometer (Barker and Hollenbach 1965, 1972; Barker 1968, 2000a). This allowed considerable progress in understanding dynamic compression processes. Among early researchers, there was an excitement in developing pioneering new capabilities and solving complex dynamic material problems using the new gauges.

Keywords

Shock Wave Flyer Plate QMDquantum Molecular Dynamic National Ignition Facility Ramp Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, D.W. Templeton, Changes to the shock response of fused quartz due to glass modification. Int. J. Impact Eng. 35, 1376–1384 (2008)CrossRefGoogle Scholar
  2. C.S. Alexander, J.R. Asay, T.A. Haill, Magnetically applied pressure-shear: a new method for direct measurement of strength at high pressure. J. Appl. Phys. 108, 126101 (2010)CrossRefGoogle Scholar
  3. T. Ao, J.R. Asay, J.-P. Davis, M.D. Knudson, C.A. Hall, High-pressure quasi-isentropic loading and unloading of interferometer windows on the Veloce pulsed power generator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Elert, M.D. Furnish, R. Chau, N.C. Holmes, J. Nguyen, vol. 955 (AIP, College Park, MD, 2007), pp. 1157–1160Google Scholar
  4. T. Ao, J.R. Asay, S. Chantrenne, M.R. Baer, C.A. Hall, A compact strip-line pulsed power generator for isentropic compression experiments. Rev. Sci. Instrum. 79, 013903 (2008)CrossRefGoogle Scholar
  5. T. Ao, M.D. Knudson, J.R. Asay, J.P. Davis, Strength of lithium fluoride under shockless compression to 114 GPa. J. Appl. Phys. 106, 103507 (2009a)CrossRefGoogle Scholar
  6. J.R. Asay, T.G. Trucano, L.C. Chhabildas, Time-resolved measurements of shock-induced vapor-pressure profiles, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 159–162Google Scholar
  7. J.R. Asay, T.G. Trucano, R. Hawke, The use of hypervelocity launchers to explore previously inaccessible states of matter. Int. J. Impact Eng. 10, 51–66 (1990)CrossRefGoogle Scholar
  8. J.R. Asay, Isentropic compression experiments on the Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 261–266Google Scholar
  9. J.R. Asay, C.A. Hall, K.G. Holland, M.A. Bernard, W.A. Stygar, R.B. Spielman, S.E. Rosenthal, D.H. McDaniel, D.B. Hayes, Isentropic compression of iron with the Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 1151–1154Google Scholar
  10. J.R. Asay, M.D. Knudson, Use of pulsed magnetic fields for quasi-isentropic compression experiments, in High Pressure Shock Compression of Solids VIII, ed. by L.C. Chhabildas, L.W. Davison, Y. Horie (Springer, New York, NY, 2005), pp. 329–380CrossRefGoogle Scholar
  11. J.R. Asay, T. Ao, J.-P. Davis, C.A. Hall, T.J. Vogler, G.T. Gray, Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression. J. Appl. Phys. 103, 083514 (2008)CrossRefGoogle Scholar
  12. J.R. Asay, T. Ao, T.J. Vogler, J.-P. Davis, G.T. Gray, Yield strength of tantalum for shockless compression to 18 GPa. J. Appl. Phys. 106, 073515 (2009)CrossRefGoogle Scholar
  13. J.R. Asay, T.J. Vogler, T. Ao, J. Ding, Dynamic yielding of single crystal Ta at strain rates of ~5 × 105/s. J. Appl. Phys. 109, 073507 (2011)CrossRefGoogle Scholar
  14. J.E. Bailey, M.D. Knudson, A.L. Carlson, G.S. Dunham, M.P. Desjarlais, D.L. Hanson, J.R. Asay, Time-resolved optical spectroscopy measurements of shocked liquid deuterium. Phys. Rev. B 78, 144107 (2008)CrossRefGoogle Scholar
  15. L.M. Barker, Measurement of Free Surface Motion by the Slanted Resistor Technology. Sandia National Laboratories Report SC-DR-610078 (Sandia National Laborator, Albuquerque, NM, 1961)Google Scholar
  16. L.M. Barker, R.E. Hollenbach, Interferometer technique for measuring the dynamic mechanical properties of materials. Rev. Sci. Instrum. 36(11), 1617–1620 (1965)CrossRefGoogle Scholar
  17. L.M. Barker, Fine structure of compressive and release wave shapes in aluminum measured by the velocity interferometer technique, in Behavior of Dense Media Under High Dynamic Pressures, Proceedings of IUTAM Symposium on the Behavior of Dense Media Under High Dynamic Pressures, Paris, France, September 11–16, 1967, ed. by J. Berger (Gordon and Breach, New York, NY, 1968), pp. 483–504Google Scholar
  18. L.M. Barker, R.E. Hollenbach, Shock wave studies of PMMA, fused silica, and sapphire. J. Appl. Phys. 41(10), 4208–4226 (1970)CrossRefGoogle Scholar
  19. L.M. Barker, R.E. Hollenbach, A laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43(11), 4669–4675 (1972)CrossRefGoogle Scholar
  20. L.M. Barker, High-pressure quasi-isentropic impact experiments, in Shock Compression of Condensed Matter, ed. by J.R. Asay, R.A. Graham, G.K. Straub (Elsevier, Amsterdam, 1984), pp. 217–223Google Scholar
  21. L.M. Barker, The development of the VISAR, and its use in shock compression science, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000a), pp. 11–17Google Scholar
  22. L.M. Barker, Multi-beam VISARs for simultaneous velocity vs. time measurements, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000b), pp. 999–1002Google Scholar
  23. G.C. Bessette, R.J. Lawrence, L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, W.V. Saul, Multi-dimensional hydrocode analysis of penetrating hypervelocity impacts, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, Y.M. Gupta, J.W. Forbes, vol. 706 (AIP, College Park, MD, 2004), pp. 1323–1326Google Scholar
  24. R.M. Brannon, L.C. Chhabildas, Experimental and numerical investigation of shock-induced full vaporization of zinc. Int. J. Impact Eng. 17, 109–120 (1995)CrossRefGoogle Scholar
  25. N.S. Brar, Z. Rosenberg, S.J. Bless, Applying Steinberg’s model to the Hugoniot elastic limit of porous boron carbide specimens, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes (Elsevier, Amsterdam, 1992), pp. 467–470Google Scholar
  26. J.L. Brown, C.S. Alexander, J.R. Asay, T.J. Vogler, J.L. Ding, Extracting strength from high pressure ramp-release experiments. J. Appl. Phys. 114, 223518 (2013a)CrossRefGoogle Scholar
  27. J.L. Brown, C.S. Alexander, J.R. Asay, T.J. Vogler, D.H. Dolan, J.L. Belof, Flow strength of tantalum under ramp compression to 250 GPa. J. Appl. Phys. 115, 043530 (2014a)CrossRefGoogle Scholar
  28. J.L. Brown, M.D. Knudson, C.S. Alexander, J.R. Asay, Shockless compression and release behavior of beryllium to 110 GPa. J. Appl. Phys. 116, 033502 (2014b)CrossRefGoogle Scholar
  29. S. Chantrenne, J.L. Wise, J.R. Asay, M.E. Kipp, C.A. Hall, Design of a sample recovery assembly for magnetic ramp-wave loading, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elbert, W.T. Buttler, M.D. Furnish, W.W. Anderson, W.G. Proud, vol. 1195 (AIP, College Park, MD, 2009), pp. 695–698Google Scholar
  30. L.C. Chhabildas, H.J. Sutherland, J.R. Asay, A velocity interferometer technique to determine shear-wave particle velocity in shock-loaded solids. J. Appl. Phys. 50(8), 5196–5201 (1979)CrossRefGoogle Scholar
  31. L.C. Chhabildas, J.W. Swegle, Dynamic pressure-shear loading of materials using anisotropic crystals. J. Appl. Phys. 51(9), 4799–4807 (1980)CrossRefGoogle Scholar
  32. L.C. Chhabildas, R.D. Hardy, Pressure-shear loading techniques for material-property studies [A paper was prepared on this topic for the Aeroballistic Range Association; hence, ARA members should be able to obtain a CD-ROM containing the collected proceedings]. Sandia National Laboratories Report SAND82-1546 (Sandia National Laboratory, Albuquerque, NM, 1982)Google Scholar
  33. L.C. Chhabildas, J.W. Swegle, On the dynamical response of particulate-loaded materials I. Pressure-shear loading of alumina particles in an epoxy matrix. J. Appl. Phys. 53(2), 954–956 (1982)CrossRefGoogle Scholar
  34. L.C. Chhabildas, M.E. Kipp, Pressure-shear loading of PBX-9404, in Proceedings of the 8th International Detonation Symposium, Navy Report NSWC MP 86-194, ed. by J.M. Short, W.E. Deal (NSWC MP, Albuquerque, NM, 1985), pp. 274–283Google Scholar
  35. L.C. Chhabildas, L.M. Barker, Dynamic quasi-isentropic compression of tungsten, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 111–114Google Scholar
  36. L.C. Chhabildas, J.R. Asay, L.M. Barker, Shear Strength of Tungsten Under Shock- and Quasi-Isentropic Loading to 250 GPa. Sandia National Laboratories Report SAND88-0306 (Sandia National Laboratory, Albuquerque, NM, 1988)Google Scholar
  37. L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, Relationship of fragment size to normalized spall strength for materials. Int. J. Impact Eng. 10, 107–124 (1990)CrossRefGoogle Scholar
  38. L.C. Chhabildas, L.M. Barker, J.R. Asay, T.G. Trucano, G.I. Kerley, J.E. Dunn, Launch capabilities to over 10 km/s, in Shock Compression of Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 1025–1031Google Scholar
  39. L.C. Chhabildas, J.E. Dunn, W.D. Reinhart, J.M. Miller, An impact technique to accelerate flyer plates to velocities over 12 km/s. Int. J. Impact Eng. 14, 121–132 (1993b)CrossRefGoogle Scholar
  40. L.C. Chhabildas, L.N. Kmetyk, W.D. Reinhart, C.A. Hall, Enhanced hypervelocity launcher: capabilities to 16 km/s. Int. J. Impact Eng. 17, 183–191 (1995)CrossRefGoogle Scholar
  41. L.C. Chhabildas, M.D. Furnish, D.E. Grady, Impact of alumina rods – a computational and experimental study. J. Phys. IV (Colloque) 7(C3), 137–143 (1997)Google Scholar
  42. L.C. Chhabildas, M.D. Furnish, W.D. Reinhart, D.E. Grady, Impact of AD995 alumina rods, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes, vol. 429 (AIP, College Park, MD, 1998), pp. 505–508Google Scholar
  43. L.C. Chhabildas, W.D. Reinhart, Intermediate strain-rate loading experiments – technique and applications to ceramics, in Proceedings of the 15th US Army Symposium on Solid Mechanics, ed. by S.C. Chou, K.S. Iyer (Batelle, Columbus, OH, 1999), pp. 233–240Google Scholar
  44. L.C. Chhabildas, T.G. Trucano, R.M. Summers, W.D. Reinhart, J.S. Peery, D.A. Mosher, G.A. Mann, C.H. Konrad, M.E. Kipp, Experimental benchmark data for ALEGRA code validations, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000b), pp. 1011–1014Google Scholar
  45. L.C. Chhabildas, W.M. Trott, W.D. Reinhart, J.R. Cogar, G.A. Mann, Incipient spall studies in tantalum – microstructural effects, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 483–486Google Scholar
  46. L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, G.C. Bessette, W.V. Saul, R.J. Lawrence, M.E. Kipp, Hypervelocity Impacts on Aluminum from 6 to 11 km/s for Hydrocode Benchmarking. Sandia National Laboratories Report SAND2003-1235 (Sandia National Laboratory, Albuquerque, NM, 2003)Google Scholar
  47. L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, J.L. Brown, Shock-induced vaporization in metals. Int. J. Impact Eng. 33(1-12), 158–168 (2006)CrossRefGoogle Scholar
  48. K. Cochrane, T.J. Vogler, M.P. Desjarlais, T.R. Mattsson, Density Functional Theory (DFT) simulations of porous tantalum pentoxide, in 18th American Physical Society Shock Compression in Condensed Matter and 24th International Association for the Advancement of High Pressure Science and Technology Conference. Journal of Physics Conference Series, ed. by W. Buttler, M. Furlanetto, W. Evans, vol. 50 (IOP Publishing, Bristol, 2014), p. 032005Google Scholar
  49. G.W. Collins, L.B. Da Silva, P. Celliers, D.M. Gold et al., Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science 281, 1178–1181 (1998)CrossRefGoogle Scholar
  50. L.B. Da Silva, P. Celliers, G.W. Collins, K.S. Budil, N.C. Holmes et al., Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78, 483–486 (1997)CrossRefGoogle Scholar
  51. J.-P. Davis, D.B. Hayes, J.R. Asay, P.W. Watts, P.A. Flores, D.B. Reisman, Investigation of liquid-solid phase transition using Isentropic Compression Experiments (ICE), in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 221–224Google Scholar
  52. J.-P. Davis, User Manual for INVICE 0.1-Beta: A Computer Code for Inverse Analysis of Isentropic Compression Experiments. Sandia National Laboratories Report SAND2005–2068 (Sandia National Laboratory, Albuquerque, NM, 2005)Google Scholar
  53. J.-P. Davis, C. Deeney et al., Magnetically driven isentropic compression to multi-megabar pressures using shaped current pulses on the Z accelerator. Phys. Plas. 12, 056310 (2005)CrossRefGoogle Scholar
  54. J.-P. Davis, Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys. 99(10), 103512 (2006)CrossRefGoogle Scholar
  55. J.-P. Davis, S. Foiles, Experimental and Computational Study of the Liquid–Solid Transition in Tin. Sandia National Laboratories Report SAND2005-6522 (Sandia National Laboratory, Albuquerque, NM, 2005)Google Scholar
  56. M.P. Desjarlais, Practical improvements to the Lee-More conductivity near the metal-insulator transition. Contrib. Plasma Phys. 41(2-3), 267–270 (2001)CrossRefGoogle Scholar
  57. M.P. Desjarlais, J.D. Kress, L.A. Collins, Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E 66, 025401 (2002)CrossRefGoogle Scholar
  58. M.P. Desjarlais, Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing. Phys. Rev. B 68, 064204 (2003)CrossRefGoogle Scholar
  59. D.H. Dolan, M.D. Knudson, C.A. Hall, C. Deeney, A metastable limit for compressed liquid water. Nat. Phys. 3, 339–342 (2007)CrossRefGoogle Scholar
  60. K.E. Duprey, R.J. Clifton, Pressure shear response of thin tantalum foils, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 447–450Google Scholar
  61. D.E. Fratanduono, T.R. Boehly, M.A. Barrios, D.D. Meyerhofer, J.H. Eggert et al., Refractive index of lithium fluoride ramp compressed to 800 GPa. J. Appl. Phys. 109, 123521 (2011)CrossRefGoogle Scholar
  62. M.D. Furnish, W.D. Reinhart, W.M. Trott, L.C. Chhabildas, T.J. Vogler, Variability in dynamic properties of tantalum: Spall, Hugoniot elastic limit and attenuation, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, M. Elert, T.P. Russell, C.T. White, vol. 845 (AIP, College Park, MD, 2006), pp. 615–618Google Scholar
  63. M. Furnish, T.J. Vogler, C.S. Alexander, W.D. Reinhart, W.M. Trott, L.C. Chhabildas, Statistics of the Hugoniot elastic limit from line VISAR, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Elert, M.D. Furnish, R. Chau, N.C. Holmes, J. Nguyen, vol. 555 (AIP, College Park, MD, 2007), pp. 521–524Google Scholar
  64. D.E. Grady, Shock-compression properties of ceramics, in Recent Trends in High-Pressure Research, Proceedings of the International Conference on High Pressure Science and Technology. AIRAPT-XIII, ed. by A.K. Singh (Oxford and IBH Publishing, Oxford, 1992), pp. 641–650Google Scholar
  65. D.E. Grady, Dynamic Properties of Ceramic Materials. Sandia National Laboratories Report SAND94-3266 (Sandia National Laboratory, Albuquerque, NM, 1995b)Google Scholar
  66. R.A. Graham, Piezoelectric behavior of impacted quartz. J. Appl. Phys. 32(3), 555 (1961a)CrossRefGoogle Scholar
  67. R.A. Graham, Technique for studying piezoelectricity under transient high stress conditions. Rev. Sci. Instrum. 32(12), 1308–1313 (1961b)CrossRefGoogle Scholar
  68. R.A. Graham, G.E. Ingram, A shock-wave stress gauge utilizing the capacitance change of a solid dielectric disc, in Behavior of Dense Media Under High Dynamic Pressure, ed. by J. Berger (Gordon and Breach, New York, NY, 1968), pp. 469–482Google Scholar
  69. R.A. Graham, Piezoelectric current from shunted and shorted guard-ring quartz gauges. J. Appl. Phys. 46(5), 1901–1909 (1975)CrossRefGoogle Scholar
  70. R.A. Graham, R.P. Reed (eds.), Selected Papers on Piezoelectricity and Impulsive Pressure Measurements. Sandia National Laboratories Report SAND78-1911 (Sandia National Laboratory, Albuquerque, NM, 1978)Google Scholar
  71. F.V. Grigoryev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, V.D. Urlin, Experimental determination of the compressibility of hydrogen at densities 0.5–2 g/cm3. JETP Lett. 16, 201–204 (1972)Google Scholar
  72. T.A. Haill, C.J. Garasi, A.C. Robinson, ALEGRA-MHD: Version 40. Sandia National Laboratories Report SAND2003-4074 (Sandia National Laboratory, Albuquerque, NM, 2003)Google Scholar
  73. C.A. Hall, L.C. Chhabildas, W.D. Reinhart, Shock Hugoniot and release in concrete with different aggregate sizes from 3 to 23 GPa. Int. J. Impact Eng. 23, 341–351 (1999)CrossRefGoogle Scholar
  74. C.A. Hall, J.R. Asay, W.M. Trott, M. Knudson, K.J. Fleming, M.A. Bernard, B.F. Clark, A. Hauer, G. Kyrala, Aluminum Hugoniot measurements on the Sandia Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 1171–1174Google Scholar
  75. C.A. Hall, J.R. Asay, M.D. Knudson, W.A. Stygar, R.B. Spielman, T.D. Pointon, D.B. Reisman, A. Toor, R.C. Cauble, Isentropic compression of solids using pulsed magnetic fields. Rev. Sci. Instrum. 72(9), 3587–3595 (2001a)CrossRefGoogle Scholar
  76. C.A. Hall, M.D. Knudson, J.R. Asay et al., High velocity flyer plate launch capability on the Sandia Z accelerator. Int. J. Impact Eng. 26, 275–287 (2001b)CrossRefGoogle Scholar
  77. C.A. Hall, J.R. Asay, M.D. Knudson, D.B. Hayes, R.L. Lemke, J.-P. Davis, C. Deeney, Recent advances in quasi-isentropic compression experiments (ICE) on the Sandia Z accelerator, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 1163–1168Google Scholar
  78. D.L. Hanson, J.R. Asay, C.A. Hall, M.D. Knudson, J.E. Bailey, K.J. Fleming, R.R. Johnston, B.F. Clark, M.A. Bernard, W.W. Anderson, G. Hassall, S.D. Rothman, Progress on deuterium measurements on Z, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 1175–1178Google Scholar
  79. R.S. Hawke, Experiments on hydrogen at megabar pressures; metallic hydrogen, in Festkörperprobleme 14, ed. by H.J. Queisser (Springer, Berlin, 1974), pp. 111–118CrossRefGoogle Scholar
  80. D.B. Hayes, C.A. Hall, J.R. Asay, M.D. Knudson, Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys. 96(10), 5520–5527 (2004)CrossRefGoogle Scholar
  81. D.G. Hicks, T.R. Boehly, P.M. Celliers, J.H. Eggert, S.J. Moon, D.D. Meyerhofer, G.W. Collins, Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa. Phys. Rev. B 79, 014112 (2009)CrossRefGoogle Scholar
  82. K.G. Holland, L.C. Chhabildas, W.D. Reinhart, M.D. Furnish, Experiments of cercom SiC rods under impact, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 585–588Google Scholar
  83. H. Huang, J.R. Asay, Compressive strength measurements in aluminum for shock compression over the stress range of 4-22 GPa. J. Appl. Phys. 98, 033524 (2005)CrossRefGoogle Scholar
  84. G.I. Kerley, J.L. Wise, Shock-induced vaporization of porous aluminum, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, N.C. Holmes (Elsevier, Amsterdam, 1988), pp. 155–158Google Scholar
  85. G.I. Kerley, Equations of State for Hydrogen and Deuterium. Sandia National Laboratories Report SAND2003-3613 (Sandia National Laboratory, Albuquerque, NM, 2003)Google Scholar
  86. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, W.W. Anderson, Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87, 225501 (2001)CrossRefGoogle Scholar
  87. M.D. Knudson, D.L. Hanson, J.E. Bailey, R.W. Lemke, C.A. Hall, C. Deeney, J.R. Asay, Equation of state measurements in liquid deuterium to 100 GPa. J. Phys. A: Math. Gen. 36(22), 6149–6158 (2003a)CrossRefGoogle Scholar
  88. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Phys. Rev. Lett. 90(3), 035505 (2003b)CrossRefGoogle Scholar
  89. M.D. Knudson, R.W. Lemke, D.B. Hayes, C.A. Hall, C. Deeney, J.R. Asay, Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys. 94, 4420–4431 (2003c)CrossRefGoogle Scholar
  90. M.D. Knudson, C.A. Hall, R. Lemke, C. Deeney, J.R. Asay, High velocity flyer plate launch capability on the Sandia Z accelerator. Int. J. Impact Eng. 29, 377–384 (2003d)CrossRefGoogle Scholar
  91. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, C. Deeney, Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Phys. Rev. B 69(14), 144209 (2004)CrossRefGoogle Scholar
  92. M.D. Knudson, J.R. Asay, C. Deeney, Adiabatic release measurements in aluminum from 240- to 500-GPa states on the principal Hugoniot. J. Appl. Phys. 97, 073514 (2005)CrossRefGoogle Scholar
  93. M.D. Knudson, M.P. Desjarlais, D.H. Dolan, Shock-wave exploration of the high-pressure phases of carbon. Science 322, 1822–1825 (2008)CrossRefGoogle Scholar
  94. M.D. Knudson, M.P. Desjarlais, Shock compression of quartz to 1.6 TPa: redefining a pressure standard. Phys. Rev. Lett. 103, 225501 (2009)CrossRefGoogle Scholar
  95. M.D. Knudson, Megaamps, megagauss, megabars: using the Sandia Z machine to perform extreme material dynamic experiments, in Shock Compression of Condensed Matter, ed. by M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler. AIP Conf.erence Proceedings, vol. 1426 (AIP, College Park, MD, 2012), pp. 35–42Google Scholar
  96. M.D. Knudson, M.P. Desjarlais, R.W. Lemke, T.R. Mattsson, Probing the interiors of the ice giants: shock compression of water to 700 GPa and 38 g/cc. Phys Rev Lett 108, 091102 (2012)CrossRefGoogle Scholar
  97. M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Direct observation of an abrupt insulator-to-metal transition in dense liquid hydrogen. Science 348, 1455–1460 (2015)CrossRefGoogle Scholar
  98. H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Lond. B 62, 676–700 (1949)CrossRefGoogle Scholar
  99. J. Lankford, Mechanisms responsible for strain-rate-dependent compressive strength in ceramic materials. J. Am. Ceram. Soc. 64(2), C33–C34 (1981)MathSciNetCrossRefGoogle Scholar
  100. Y.T. Lee, R.M. More, An electron conductivity model for dense plasmas. Phys. Fluids 27(5), 1273–1286 (1984)zbMATHCrossRefGoogle Scholar
  101. R.W. Lemke, M.D. Knudson, A.C. Robinson, T.A. Haill, K.W. Struve et al., Considerations for generating up to 10 mbar magnetic drive pressures with the refurbished Z machine (ZR), in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 651 (AIP, College Park, MD, 2002), pp. 299–302Google Scholar
  102. R.W. Lemke, M.D. Knudson, C.A. Hall, T.A. Haill, M.P. Desjarlais et al., Characterization of magnetically accelerated flyer plates. Phys. Plasmas 10, 1092–1099 (2003a)CrossRefGoogle Scholar
  103. R.W. Lemke, M.D. Knudson, A.C. Robinson et al., Self-consistent, two-dimensional magneto-hydrodynamic simulations of magnetically driven flyer plates. Phys. Plasmas 10(5), 1867–1874 (2003b)CrossRefGoogle Scholar
  104. R.W. Lemke, M.D. Knudson, J.-P. Davis, D. Bliss, H.C. Harjes, Self-consistent, 2D magneto-hydrodynamic simulations of magnetically driven flyer plate experiments on the Z-machine, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, Y.M. Gupta, J.W. Forbes, vol. 706 (AIP, College Park, MD, 2004), pp. 1175–1180Google Scholar
  105. R.W. Lemke, M.D. Knudson, D.E. Bliss, K. Cochrane, J.-P. Davis, A.A. Giunta, H.C. Harjes, S.A. Slutz, Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments. J. Appl. Phys. 98, 073530 (2005)CrossRefGoogle Scholar
  106. R.W. Lemke, M.D. Knudson, J.-P. Davis, Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. J. Impact Eng. 38, 480–485 (2011)CrossRefGoogle Scholar
  107. R.W. Lemke, M.D. Knudson, K. Cochrane, M.P. Desjarlais, J.R. Asay, On the scaling of the magnetically accelerated flyer plate technique to currents greater than 20 MA, in 18 th American Physical Society Shock Compression in Condensed Matter and 24 th International Association for the Advancement of High Pressure Science and Technology Conference, Journal of Physics: Conference Series, ed. by W. Buttler, M. Furlanetto, W. Evans, vol. 500 (IOP Publishing, Bristol, 2014), p. 152009Google Scholar
  108. J.F. Leon, R.B. Spielman, J.R. Asay, C.A. Hall, W.A. Stygar, P. L'eplattennier, Flux compression experiments on the Z Accelerator. Proceedings 12th IEEE international pulsed power conference. Proc. IEEE Int. Pulse Power Conf. 1, 275–278 (1999)CrossRefGoogle Scholar
  109. W. Lorenzen, B. Holst, R. Redmer, Metallization in hydrogen-helium mixtures. Phys. Rev. B 84, 235109 (2011)CrossRefGoogle Scholar
  110. P. Loubeyre, S. Brygoo, J. Eggert, P.M. Celliers, D.K. Spaulding, J.R. Rygg, T.R. Boehly, G.W. Collins, R. Jeanloz, Extended data set for the equation of state of warm dense hydrogen isotopes. Phys. Rev. B 86, 144115 (2012)CrossRefGoogle Scholar
  111. T.R. Mattsson, J.M.D. Lane, K.R. Cochrane, M.P. Desjarlais, A.P. Thompson, F. Pierce, G.S. Grest, First principles and classical molecular dynamics simulation of shocked polymers. Phys. Rev. B 81, 054103 (2010)CrossRefGoogle Scholar
  112. J.M. McMahon, M.A. Morales, C. Pierleoni, D.M. Ceperley, The properties of hydrogen and helium under extreme conditions. Rev. Modern Phys. 84, 1607–1653 (2012)CrossRefGoogle Scholar
  113. S.T. Montgomery, R.M. Brannon, J. Robbins, R.E. Setchell, D.H. Zeuch, Simulation of the effects of shock stress and electrical field strength on shock-induced depoling of normally poled PZT 95/5, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y.M. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 201–204Google Scholar
  114. S.T. Montgomery, D.H. Zeuch, Mechanical properties of engineering ceramics, composites and aerospace materials – a model for the bulk mechanical response of porous ceramics exhibiting a ferroelectric-to-antiferroelectric phase transition during hydrostatic compression, in Ceramic Engineering and Science Proceedings, Vol 25, ed. by E. Lara-Curzio, M.J. Readey (The American Ceramic Society, Westerville, OH, 2004), pp. 313–318Google Scholar
  115. S.T. Montgomery, Effects of Porosity and Pore Morphology on the Elastic Properties of Unpoled PZT 95/5-2Nb. Sandia National Laboratories Report SAND2008-6185 (Sandia National Laboratory, Albuquerque, NM, 2008)Google Scholar
  116. F.W. Neilson, W.B. Benedick, The piezoelectric response of quartz beyond its Hugoniot elastic limit. Bull. Am. Phys. Soc. Ser. II 5(7), 511 (1960)Google Scholar
  117. F.W. Neilson, W.B. Benedick, W.P. Brooks, R.A. Graham, G.W. Anderson, Electrical and optical effects of shock waves in crystalline quartz, in Les Ondes de Detonation, ed. by G. Ribaud (Centre National de la Recherche Scientifique, Paris, 1962), pp. 391–419Google Scholar
  118. W.J. Nellis, S.T. Weir, A.C. Mitchell, Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. B 59(5), 3434–3449 (1999)CrossRefGoogle Scholar
  119. W.J. Nellis, Metastable Metallic Hydrogen Glass. Lawrence Livermore National Laboratory Report UCRL-JC-142360 (Lawrence Livermore National Laboratory, Livermore, CA, 2001)Google Scholar
  120. W.J. Nellis, Wigner and Huntington: the long quest for metallic hydrogen. High Press. Res. 33(2), 369–376 (2013)CrossRefGoogle Scholar
  121. W.D. Reinhart, L.C. Chhabildas, W.M. Trott, D.P. Dandekar, Investigating multi-dimensional effects in single crystal sapphire, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie, vol. 620 (AIP, College Park, MD, 2002), pp. 791–794Google Scholar
  122. W.D. Reinhart, L.C. Chhabildas, Strength properties of Coors AD995 alumina in the shocked state. Int. J. Impact Eng. 29, 601–619 (2003)CrossRefGoogle Scholar
  123. W.D. Reinhart, L.C. Chhabildas, T.J. Vogler, Investigating phase transitions and strength in single crystal sapphire using shock-reshock loading techniques. Int. J. Impact Eng. 33, 655–669 (2006)CrossRefGoogle Scholar
  124. W.D. Reinhart, T.J. Vogler, L.C. Chhabildas, Strength measurements on dry Indiana limestone using ramp loading techniques, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, vol. 955 (AIP, College Park, MD, 2007), pp. 1409–1412Google Scholar
  125. W.D. Reinhart, T.F. Thornhill, L.C. Chhabildas, W.G. Breiland, J.L. Brown, Temperature measurements of expansion products from shock compressed materials using high-speed spectroscopy. Int. J. Impact Eng. 35, 1745–1755 (2008)CrossRefGoogle Scholar
  126. D.B. Reisman, A. Toor, R.C. Cauble, C.A. Hall, J.R. Asay, M.D. Knudson, M.D. Furnish, Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys. 89(3), 1625–1633 (2001a)CrossRefGoogle Scholar
  127. D.B. Reisman, J.W. Forbes, C.M. Tarver, F. Garcia, D.B. Hayes, M.D. Furnish, J.J. Dick, Isentropic compression of high explosives with the Z accelerator, in Proceedings of the 12th International Detonation Symposium, San Diego, CA, Office of Naval Research Report ONR Report 333-05-2, ed. by J.M. Short, J.L. Maienschein (Office of Naval Research, San Diego, CA, 2001b), pp. 343–348Google Scholar
  128. A.C. Robinson, T.A. Brunner, S.K. Carroll, R.R. Drake et al., ALEGRA: an arbitrary lagrangian-eulerian multimaterial, multiphysics code, in Proceedings of the 46th AIAA Aerospace Science Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA 2008–1235, ed. by IUTAM (AIAA, Huntsville, AL, 2008)Google Scholar
  129. A.C. Robinson, J.H.J. Niederhaus, V.G. Weirs, E. Love, Arbitrary Lagrangian–Eulerian 3D ideal MHD algorithms. Int. J. Num. Meth. Fluids 65, 1438–1450 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  130. S. Root, R.J. Magyar, J.H. Carpenter, D.L. Hanson, T.R. Mattsson, Shock compression of a fifth period element: Liquid xenon to 840 GPa. Phys. Rev. Lett. 105, 085501 (2010)CrossRefGoogle Scholar
  131. S. Root, K.R. Cochrane, J.H. Carpenter, T.R. Mattsson, Carbon dioxide shock and reshock equation of state data to 8 Mbar: experiments and simulations. Phys. Rev. B 87, 224102 (2013a)CrossRefGoogle Scholar
  132. S. Root, T.A. Haill, J.M.D. Lane, A.P. Thompson, G.S. Grest, D.G. Schroen, T.R. Mattsson, Shock compression of hydrocarbon foam to 400 GPa: Experiments, mesoscale modeling, and atomistic simulations. J. Appl. Phys. 114, 103502 (2013b)CrossRefGoogle Scholar
  133. E.E. Salpeter, On convection and gravitational layering in Jupiter and in stars of low mass. ApJ Lett. 181, L83–L86 (1973)CrossRefGoogle Scholar
  134. T.W.L. Sanford, G.O. Allshouse, B.M. Marder, T.J. Nash, R.C. Mock et al., Improved symmetry greatly increases x-ray power from wire-array z-pinches. Phys. Rev. Lett. 77, 5063–5066 (1996)CrossRefGoogle Scholar
  135. R.E. Setchell, S.T. Montgomery, L.C. Chhabildas, M.D. Furnish, The effects of shock stress and field strength on shock-induced depoling of normally poled PZT 95/5, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson, vol. 505 (AIP, College Park, MD, 2000), pp. 979–982Google Scholar
  136. R.E. Setchell, Refractive index of sapphire at 532 nm under shock compression and release. J. Appl. Phys. 91, 2833–2841 (2002)CrossRefGoogle Scholar
  137. R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties. J. Appl. Phys. 94, 573–588 (2003)CrossRefGoogle Scholar
  138. R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: depoling currents. J. Appl. Phys. 97, 013507 (2005)CrossRefGoogle Scholar
  139. R.E. Setchell, S.T. Montgomery, D.E. Cox, M.U. Anderson, Dielectric properties of PZT 95/5 during shock compression under high electric fields, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, M. Elert, T.P. Russell, C.T. White, vol. 845 (AIP, College Park, MD, 2006), pp. 278–281Google Scholar
  140. R.E. Setchell, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: microstructural effects. J. Appl. Phys. 101, 053525 (2007)CrossRefGoogle Scholar
  141. R.E. Setchell, M.U. Anderson, S.T. Montgomery, Compositional effects of the shock-compression response of alumina-filled epoxy. J. Appl. Phys. 101, 083527 (2007a)CrossRefGoogle Scholar
  142. R.E. Setchell, S.T. Montgomery, D.E. Cox, M.U. Anderson, Initial temperature effects on the dielectric properties of PZT 95/5 during shock compression, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen, vol. 555 (AIP, College Park, MD, 2007b), pp. 193–196Google Scholar
  143. J.H. Smith, L.M. Barker, Measurement of Tilt, Impact Velocity, and Impact Time Between Two Plane Surfaces. Sandia National Laboratories Report SC-4728 (RR) (Sandia National Laboratory, Albuquerque, NM, 1962)Google Scholar
  144. M.A. Sweeney, History of z-pinch research in the U.S, in Fifth International Conference on Dense Z Pinches, AIP Conference Proceedings, ed. by J. Davis, C. Deeney, N.R. Pereira, vol. 651 (AIP, College Park, MD, 2002), pp. 9–14Google Scholar
  145. G.I. Taylor, The testing of materials at high rates of loading. J. Inst. Civil Eng. 26, 486–519 (1946)CrossRefGoogle Scholar
  146. G.I. Taylor, The use of flat ended projectiles for determining yield stress I. Theoretical considerations. Proc. R. Soc. Lond. A194, 289–299 (1948)CrossRefGoogle Scholar
  147. T.F. Thornhill, L.C. Chhabildas, W.D. Reinhart, D.L. Davidson, Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques. Int. J. Impact Eng. 33, 799–811 (2006)CrossRefGoogle Scholar
  148. T.F. Thornhill, W.D. Reinhart, L.C. Chhabildas, W.G. Breiland, C.S. Alexander, J.L. Brown, Characterization of prompt flash signatures using high speed broadband diode detectors. Int. J. Impact Eng. 35, 1827–1835 (2008)CrossRefGoogle Scholar
  149. T.F. Thornhill, L.C. Chhabildas, W.D. Reinhart, Time-resolved optical signatures for Hugoniot state measurements in shock compressed composition B, in Shock Waves in Condensed Matter, AIP Conference Proceedings, ed. by M.L. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, W.G. Proud, vol. 1195 (AIP, College Park, MD, 2009), pp. 404–407Google Scholar
  150. T.J. Vogler, T.F. Thornhill, W.D. Reinhart, L.C. Chhabildas, D.E. Grady, L.V. Wilson, O. Hurricane, A. Woo, Fragmentation of materials in expanding tube experiments. Int. J. Impact Eng. 29, 735–746 (2003)CrossRefGoogle Scholar
  151. T.J. Vogler, J.R. Asay, A distributional model for elastic-plastic behavior of shock-loaded materials, in Shock Compression of Condensed Matter, AIP Conference Proceedings, ed. by M.D. Furnish, Y.M. Gupta, J.W. Forbes, vol. 706 (AIP, College Park, MD, 2004), pp. 617–620Google Scholar
  152. T.J. Vogler, W.D. Reinhart, L.C. Chhabildas, Dynamic behavior of boron carbide. J. Appl. Phys. 95, 173–4183 (2004)CrossRefGoogle Scholar
  153. T.J. Vogler, L.C. Chhabildas, Strength behavior of materials at high pressures. Int. J. Impact Eng. 33, 812–825 (2006)CrossRefGoogle Scholar
  154. T.J. Vogler, M.Y. Lee, D.E. Grady, Static and dynamic compaction of ceramic powders. Int. J. Solids Struct. 44, 636–658 (2007)CrossRefGoogle Scholar
  155. T.J. Vogler, J.D. Clayton, Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids 56, 297–335 (2008)CrossRefGoogle Scholar
  156. T.J. Vogler, W.M. Trott, W.D. Reinhart, C.S. Alexander, M.D. Furnish, M.D. Knudson, L.C. Chhabildas, Using the line-VISAR to study multi-dimensional and meso-scale impact phenomena. Int. J. Impact Eng. 35, 1844–1852 (2008)CrossRefGoogle Scholar
  157. T.J. Vogler, On measuring the strength of metals at ultra-high strain rates. J. Appl. Phys. 106, 053530 (2009)CrossRefGoogle Scholar
  158. T.J. Vogler, C.S. Alexander, T.F. Thornhill, W.D. Reinhart, Pressure-Shear Experiments on Granular Materials. Sandia National Laboratories Report SAND2011-6700 (Sandia National Laboratory, Albuquerque, NM, 2011)Google Scholar
  159. M.C. Wanke, A.D. Grine, M.A. Mangan, L.C. Chhabildas, W.D. Reinhart, T.F. Thornhill, C.S. Alexander, J.L. Brown, W.G. Breiland, E.A. Shaner, P.A. Miller, Advanced Diagnostics for Impact-Flash Spectroscopy on Light-Gas Guns. Sandia National Laboratories Report SAND2007-0835 (Sandia National Laboratory, Albuquerque, NM, 2007)Google Scholar
  160. S.T. Weir, A.C. Mitchell, W.J. Nellis, Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 1860–1863 (1996)CrossRefGoogle Scholar
  161. E. Wigner, H.B. Huntington, On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3(12), 764–770 (1935)CrossRefGoogle Scholar
  162. J.L. Wise, G.I. Kerley, T.G. Trucano, Shock-vaporization studies on zinc and porous carbon, in Shock Waves in Condensed Matter, ed. by S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Elsevier, Amsterdam, 1992), pp. 61–64Google Scholar

Copyright information

© Jointly by Sandia Corporation and the Authors 2017

Authors and Affiliations

  • James R. Asay
    • 1
  • Lalit C. Chhabildas
    • 1
  • R. Jeffery Lawrence
    • 1
  • Mary Ann Sweeney
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations